
Interfaces, Inc.

White Noise
Software Requirements Specification

ORBIT Interference Subsystem Controller
Version <1.0>

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 2

Revision History
Date Version Description Author

<20/09/05> <1.0> Initial Specification Ed White, Kishore
Ramachandran, Larry
Sasso.

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 3

Table of Contents
1. Introduction 4

1.1 Purpose 4
1.2 Scope 4
1.3 Definitions, Acronyms and Abbreviations 4
1.4 References 4
1.5 Overview 4

2. Overall Description 5
2.1 User Personas and Characteristics 5
2.2 Product Perspective 5
2.3 Overview of Functional Requirements 5
2.4 Overview of Data Requirements 7
2.5 General Constraints, Assumptions, Dependencies, Guidelines 7

3. Specific Requirements 7
3.1 Functionality 7

3.1.1 User types and separation of access 8
3.1.2 Administrators can specify a set of antennae and their individual function (transmission or
reception) 9
3.1.3 Administrators can update list of available instruments and their features. 10
3.1.4 NodeHandler can request to generate a signal, optionally specifying which antenna should be
used. 10
3.1.5 NodeHandler can request to observe and store spectrum information, optionally specifying
an antenna, during an experiment 11
3.1.6 NodeHandler can reset the state of hardware systems 11
3.1.7 NodeHandler can generate signals from “canned” scenarios 12
3.1.8 NodeHandler can request generation of user-defined signals 12

3.2 Usability 12
3.2.1 Administrative Users 12
3.2.2 NodeHandler 13

3.3 Reliability 13
3.4 Performance 13
3.5 Supportability 13
3.6 Design Constraints 13

3.6.1 Possible use of Visual Studio .NET for interfacing with Agilent libraries 13
3.7 On-line User Documentation and Help System Requirements 13
3.8 Purchased Components 13
3.9 Interfaces 13

3.9.1 User Interfaces 13
3.9.2 Hardware Interfaces 14
3.9.3 Software Interfaces 14
3.9.4 Communications Interfaces 14

3.10 Licensing Requirements 14

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 4

Software Requirements Specification (SRS)
1. Introduction

1.1 Purpose
This is the SRS for the White Noise Project. It describes the purpose and functionality of the
software tool, as requested by the Wireless Information Networks Laboratory (WINLAB) at
Rutgers University. It aims to serve as a guideline for developers as well as for future use and
maintenance.

1.2 Scope
The objective of this project is to create a web-based software tool that is part of a suite of
applications enabling the efficient usage of an indoor wireless experimental facility. The purpose
of this tool is to enable the generation and visualization of radio-level signals in wireless
experiments run by end-users. These signals could range from simple hardware supported
waveforms to complex combinations of arbitrary waveforms provided by the end-user. We aim
to provide sufficient documentation to facilitate the work for future teams on this tool.

1.3 Definitions, Acronyms and Abbreviations
Testbed – Experimental Research Facility
Instrument – A system capable of generating radio-level signals or observing them
Node – A computer used in the testbed as part of wireless experiments
WINLAB – Wireless Information Networks Laboratory
ORBIT – Open Access Research Testbed for Next Generation Wireless Networks
HTTP – Hypertext Transfer Protocol
AWGN – Additive White Gaussian Noise
UI – User Interface

1.4 References
• Ivan Seskar, Director of IT, WINLAB, Rutgers University
• ORBIT Indoor Testbed
• NodeHandler
• Agilent Vector Signal Analyzer
• Agilent ESG Vector Signal Generator

1.5 Overview
The rest of this document describes the software requirements for the White Noise Project. In
section 2, we describe the end users and their usage patterns, tool perspective, general
constraints, and functional data requirements for implementing this project. Section 3 describes
the detailed functional requirements for this tool. The remainder of the document mainly
discusses reliability requirements and quality attributes.

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 5

2. Overall Description

2.1 User Personas and Characteristics

There are two basic user personas, each of which has specific set of access levels and privileges.
We differentiate our user personas according to their interactions with the system. NOTE: There
is no overlap between the personas, since only one user is to be entertained by the system at any
point of time.

• Administrator: An end-user with root/administrator privileges with regards to

o Controlling all applications which includes starting or stopping them as well as
changing their configurations.

o Modifying any file or directory; this includes adding new ones and modifying or
deleting existing ones.

o Changing network interface properties like IP addresses and routing tables.

o Changing authentication settings like passwords.

From our tool’s perspective, Administrators will be responsible for configuration and quality
control – they will review tool configuration settings before they can used. We expect this
user to be an expert with regards to the underlying hardware systems with at least an
intermediate level of expertise in system administration.

• NodeHandler: A software application that provides a script-based interface to run
experiments on the indoor wireless testbed. One aspect of an experiment is provided by
our tool, namely the controlled injection of signals and their visualization. NodeHandler
will access the functions provided by our tool on behalf of an experimenter.

From our tool’s perspective, we expect this user to know nothing with regards to the
hardware systems in use. We also do not expect this user to be anything more than a novice
with regards to using software applications.

2.2 Product Perspective

• The tool should provide a standard interface for remote access via the Internet;

2.3 Overview of Functional Requirements

• The primary requirement of the tool is the generation and visualization of radio-level
signals in experiments run by the end-users. These experiments are carried out on an
indoor wireless testbed that is part of ORBIT.

• The tool will be responsible for interacting with and controlling a hardware subsystem
consisting of,

1. Multiple instruments, each of which is responsible for either signal generation or
visualization. Each instrument maintains state and has certain rules that should be
followed; these rules are dependent, among other things, on the state of this

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 6

system.

2. Multiple antennae, which will either radiate signals generated by the respective
instruments or be in a position to observe them

3. An RF switching and gain control system that connects the instruments and the
antennae. The client has asked us to assume that this switching system can
support every possible switching/routing combination. In addition, this system
also provides the ability to control each individual antenna’s gain.

The tool could either use software libraries to interface with the entire system or use
libraries to interface with each hardware component separately. Figure 1 illustrates this
concept.

Figure 1. System-level overview of the ORBIT Interference Subsystem Controller

• The tool should support a fine granularity of control for users who wish to specify the
actual antennae and their respective functions (transmission or reception) in the
experiment. It should also support users who wish to specify only the presence or absence
of specific radio signals without regard to the specific antennae used.

• With regards to the interaction between NodeHandler and the signal generating
instruments, the tool should support the following:

1. Functions with a “one-to-one” mapping between the user request and what the
instrument supports. For e.g. user requests generation of an in-built signal on a
specific channel on all antennae.

2. Functions, which correspond to “canned” scenarios and could result in the
combination of multiple instruments and/or the execution of multiple instrument

Instrument 1

Instrument 2

Instrument n

RF Switching
And Antenna
Gain Control

Antenna 1

Antenna n

ORBIT Interference Subsystem Controller

Signal
Generation

Signal
Reception

NodeHandler

Software libraries to interface with hardware

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 7

commands. For e.g. user requests the presence of a signal that resembles radiation
from a microwave oven.

3. Functions, which allow the user to specify arbitrary signals using some form of
input and the subsequent generation of the same. The form of this input should be
well-defined.

4. Functions, which are a combination of all or any of the three scenarios mentioned
above.

5. The tool should provide for storage and display of radio-level visualization data.
The storage formats should be well-defined.

2.4 Overview of Data Requirements

Storage and well-defined formats will be required for hardware architecture data provided by the
administrative user.

Storage, well-defined formats and storage policies for the size of data will be required for user
data describing the waveforms that are to be generated.

Storage, well-defined formats and storage policies for the size of data will be required for the
radio-level visualization data as well.

2.5 General Constraints, Assumptions, Dependencies, Guidelines

• It is assumed that the end-user has access to the Internet.

• It is assumed that only one user will access this tool at any point of time. Further, this
prevention of multi-user access is provided by the ORBIT hardware and software
infrastructure.

• Our tool does not address user authentication either and depends on the underlying
ORBIT infrastructure for the same.

3. Specific Requirements

3.1 Functionality

A customizable, hardware systems architecture is defined by an administrative user, consisting
of:

• A set of antennae and constraints upon them

• A set of available instruments

• The RF switching and gain control system between the instruments and the antennae

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 8

Our tool uses this architecture specification to provide a software interface that

1. Controls signal generation and visualization,
2. Responds to remote requests for service,
3. Supports script-based execution of all functions supported,
4. Provides sanity checks before relaying user requests to the hardware, for e.g. in response

to a signal generation request, making sure that at least one signal generator instrument is
available and the requested numbers of transmitting antenna are available before request
execution.

5. Uses existing, standard Internet protocols to communicate.

Thus, http has been specified as the underlying protocol upon which this interface must be built.
Actual implementation may consist of html forms, scripts, and/or web services.

3.1.1 User types and separation of access

Users of the system fall into two types: ‘Administrators’ and ‘NodeHandler’

Administrators: Administrative users are responsible for maintaining and modifying the
hardware architecture (modifications could include the addition or removal of instruments and
antennae). They are also responsible for relaying the architecture changes to our tool using a
well-defined format. It is assumed that these users will have elevated access and control over the
complete subsystem including our tool.

In order to provide the administrator with an interface to update the hardware architecture, a
couple of choices exist. One is that of input obtained from an online HTML form page during
runtime. Information from this form is captured and used for future experiments. The other
option is that of reading this information from a file or a database and requiring a restart after
each change. A couple of reasons as to why we opt for the file interface are as follows:

(a) These architecture changes are expected to be rare events
(b) The administrator and the experimenter are expected not to access the tool

simultaneously. Thus, the requirement is only for this change to take effect in the next
experiment. Additionally, these changes may have to be tested before their introduction
into main-stream usage.

(c) Ease of use and simplicity of implementation

A sample file format for hardware architecture information is shown in figure 2.

Entry
No.

Instrument
ID

Instrument
Type

Name Feature 1 Constraint 1

1 01 ESG Some
string

A L

2 02 VSA 10.12.2.1 B M
3 03 RF Switch C N

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 9

ESG: Signal Generator VSA: Signal Analyzer

 Example Feature: Range of frequencies supported.
 Example Constraint: maximum power levels instruments can generate.

Figure 2. Sample file format for Administrator to enter hardware architecture information.

A sample file format for antenna information is shown in figure 3.

Entry No. Antenna Functionality Approximate
Position

1 Tx (x1,y1)-(x2,y2)
2 Rx (x3,y3)-(x4,y4)
3 Tx (x5,y5)-(x6,y6)

 Tx : Transmitting antenna Rx: Receiving antenna

(xi, yi) – (xj,yj): Position of antenna in the indoor testbed, with respect to the nodes.

These file formats are preliminary and we will need to understand the features provided by the
software interfaces. The tool does not have to check for configuration changes during run-time.

NodeHandler: As specified earlier, this is a software application that interacts with our tool on
behalf of an experimenter to perform signal generation and monitoring. We see no need to
expose system configuration functionality to this end-user – we aim to provide an opaque
interface to underlying hardware systems. The tool should also protect the hardware from
malicious as well as ignorant users and return descriptive error statements where applicable. We
expect inadvertent mistakes such as,

o Typographical errors in the NodeHandler script

o Errors in the NodeHandler script for functions that do not exist or are currently
unsupported.

We also aim to provide protection from malicious attacks such as setting the transmit power on
the signal generation antennas to a value that could damage the hardware. This could result in a
denial-of-service to the next experimenter if a particular function is unavailable due to hardware
malfunction.

3.1.2 Administrators can specify a set of antennae and their individual function (transmission or
reception)

Administrators should have a mechanism whereby they can define the usable set of antennae
along with a specification of whether each one transmits (‘T’) or receives (‘R’).

Name: Admin Antenna Change
Precondition: Administrator is logged in and is the only end-user using this tool.
Main flow of Events:

1. Log into the computer on which this tool is running using administrator
privileges.

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 10

2. Stop this application.
3. Apply changes to the antenna configuration file in the specified format.
4. Our tool checks syntax and consistency of the configuration files.
5. Restart application
6. Run test suite of commands before allowing experimenters to use this tool.

Priority Level: 1 (To be considered for implementation this semester)

3.1.3 Administrators can update list of available instruments and their features.

Administrators can add/remove instruments from the available set for which access is allowed to
experimenters. While adding instruments, they will include relevant constraints and features in
the instrument configuration file.

Name: Admin Instrument Change
Precondition: Administrator is logged in and is the only end-user using this tool.
Main flow of Events:

1. Log into the computer on which this tool is running using administrator
privileges.

2. Stop this application.
3. Apply changes to the instrument configuration file in the specified format and

directory.
4. Our tool checks syntax and consistency of the configuration files.
5. Restart application.
6. Run test suite of commands before allowing experimenters to use this tool.

Priority Level: 1 (To be considered for implementation this semester)

3.1.4 NodeHandler can request to generate a signal, optionally specifying which antenna should
be used.

NodeHandler can provide information about what type of signal to generate, along with which
antenna(s) to connect this signal to for transmission. The front-end will validate this request in
the context of the current system state, and interface with the system to connect an appropriately
configured signal generation instrument to the requested antenna(s).

Seven sample signal types we are beginning to look into are sine, cosine, triangle, square,
positive ramp, negative ramp and AWGN. NodeHandler will need to provide the amplitude,
frequency, phase and duration of the signal. Any item determined to be out of range will trigger
an error to be returned and no signal generation will occur.

Antenna requests will be validated based on the constraint information stored in the antenna
configuration file.

Name: Signal Generate
Precondition: NodeHandler has requested signal generation
Main flow of events:

1. Process request from NodeHandler (antenna, waveform, gain, frequency, phase, duration)

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 11

2. Check specified information for proper value range
What is “proper” value range?
3. Check specified information relative to antenna configuration file
4. If specifications are within range, send commands to equipment to generate signals,

otherwise return error to NodeHandler
5. Signal generation ends on the execution of the “stop generation” command from

NodeHandler.
Priority Level: 1 (To be considered for implementation this semester)

3.1.5 NodeHandler can request to observe and store spectrum information, optionally
specifying an antenna, during an experiment

NodeHandler can request to observe the signal being received on a given antenna. The front-end
will validate this request in the context of the current system state, and interface with the system
to connect an appropriately configured signal observation instrument to the requested antenna.
Observed data will be transported to a database using the ORBIT measurement library (OML)
framework.

We expect this each observation to be a single floating point value. We also expect to provide an
interface where NodeHandler can specify both the number and type of measurement.

Name: Signal Observe
Precondition: NodeHandler has requested signal observation
Main flow of events:

1. Process request from NodeHandler (antenna to observe signal on, type of observation,
number of observations)

2. Check whether an instrument that supports the type of observation is available.
3. If instrument is available, send a “trigger” message asking the instrument to observe (for

a particular duration).
4. Once duration elapses, ask instrument for recorded observation values.
5. Recorded observation values are then sent to a database using the OML framework.
6. Signal observation ends on the reception of the “stop observation” command from

NodeHandler.
Priority Level: 2 (To be considered for implementation only if other higher priority tasks are
completed)

3.1.6 NodeHandler can reset the state of hardware systems

NodeHandler can reset the state of all instruments in use. A reset can be performed at any time
during an experiment.

Name: Reset
Precondition: Experiment is about to begin or a requested experiment is currently running
Main flow of events:

1. Instruct all instruments to stop.
2. Store any data collected prior to the execution of this command (if NodeHandler had

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 12

made such a request earlier).
3. Instruct all instruments to reset.

Priority Level: 1 (To be considered for implementation this semester)

3.1.7 NodeHandler can generate signals from “canned” scenarios

The NodeHandler can request a “canned” scenario, which may require the participation of
multiple instruments simultaneously and multiple antennae.

Name: Canned Signal Generate
Precondition: NodeHandler has requested canned signal generation
Main flow of events:

1. Receive canned scenario specification from NodeHandler
2. Use multiple instances of Signal Generate to run experiment
3. Proceed as described in 3.1.4

Priority Level: 2 (To be considered for implementation only if higher priority tasks are
completed)

3.1.8 NodeHandler can request generation of user-defined signals

The NodeHandler can request a “user-specific” scenario, which may require the participation of
multiple instruments simultaneously and multiple antennae. Formats need to be specified for user
input.

How does user define the signal???

Name: User-defined Signal Generate
Precondition: NodeHandler has requested user-defined signal generate
Main flow of events:

1. Receive scenario information from NodeHandler
2. Verify input for format inconsistencies and checks to determine whether available

instruments can support it
3. Generate signal using Signal Generate
4. Proceed as described in 3.1.4

Priority Level: 2 (To be considered for implementation only if higher priority tasks are
completed)

3.2 Usability

3.2.1 Administrative Users

Administrative users are likely to be more familiar with the hardware systems, our tool and
ORBIT. A functionally correct front-end interface can be achieved through the use of
configuration files. These files will be text-based with a specified format.

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 13

3.2.2 NodeHandler

The end-users in this category may not be familiar with ORBIT and our tool and are to be
shielded from the instruments and related hardware. The functionality required should be
abstracted to a user-interface which takes high-level requests, and hides the details of how those
requests are executed.

3.3 Reliability

We expect our tool to provide a robust, 24/7/365 online service, which is brought down only
during maintenance and architecture upgrades.

3.4 Performance

No specific performance requirements are specified.

3.5 Supportability

Upon delivery, our tool should be documented in such a way as to be fully supported by
Administrative users, as the original developers will not be available for future enhancements.
See also 3.7.

3.6 Design Constraints

3.6.1 Possible use of Visual Studio .NET for interfacing with Agilent libraries

The Agilent libraries allow simplified control of the hardware and are available on the Microsoft
.NET platform. If the Agilent libraries are to be used, programming must be done using Visual
Studio .NET. The languages available in Visual Studio .NET include Visual Basic and C#.

3.7 On-line User Documentation and Help System Requirements

Our tool should be documented for future administrative users, developers and NodeHandler.
The current team of developers will not be available after initial implementation and therefore all
aspects, including the requirements specification and system design should be documented as
well.

Documentation for NodeHandler should be written without any assumptions of previous
knowledge of ORBIT or this tool.

3.8 Purchased Components

Our tool must be implemented without any additional purchased components.

3.9 Interfaces

3.9.1 User Interfaces

The user interface must offer remote access to RF signal generation and observation. In addition,
we expect the common mode of access to be via nodeHandler, which implies that, our user

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 14

interface, be “scriptable”. Given these requirements, we are leaning towards a web-services
based interface, which would leverage the universal nature of HTTP for remote access.
Additionally, this would enable remote procedure calls in an extensible manner. SOAP/XML
requests and responses will be sent over an HTTP link and we could provide support for this
interface in many programming and scripting languages.

For any language, we expect to provide the following methods:

public string Generate(String[] names, String[] values)
public string Observe(String[] names, String[] values)
public string GenerateCanned(String cannedname)
public string Reset()
public string StopGenerate(String request_id)
public string StopObserve(String request_id)
public string ReturnSupportedSignals()

3.9.2 Hardware Interfaces

The hardware involved is controllable directly by socket connections or by the Agilent libraries.
If the software libraries are not used, specific interface information will be needed to interface
with the hardware using GPIB and other direct command protocols. In this case an expansion
card would be required to provide connectivity with the hardware.

3.9.3 Software Interfaces

The Agilent .NET libraries could be used. In this case programming must be done using Visual
Studio .NET. Otherwise any development environment and language could be used.

The program must interface with a registered user’s time-slot list that is created externally by
another piece of software.

3.9.4 Communications Interfaces

Various communications schemes are used by the equipment including GPIB and proprietary
protocols. Communication could be simplified by using the Agilent .NET libraries to control
communication.

3.10 Licensing Requirements

Any additional components used aside from the Agilent libraries must not incur any intrusive
licensing costs or other constraints.

Use case diagrams:

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 15

NodehandlerNodehandler

Signal GenerateSignal Generate

Signal ObserveSignal Observe

ResetReset

User-defined
Signal Generate

User-defined
Signal Generate

Canned
Signal Generate

Canned
Signal Generate

<<uses>>
<<uses>>

Stop GenerateStop Generate

Stop ObserveStop Observe

Return Supported
Signals

AdministratorAdministrator

Admin Antenna
Change

Admin Antenna
Change

Admin Instrument
Change

Admin Instrument
Change

LoginLogin

<<uses>>

<<uses>>

White Noise Version: <1.0>
Software Requirements Specification Date: 9/20/05
<document identifier>

Confidential Interfaces, Inc., 2005 Page 16

