This guide provides the configuration commands of L2/L3 for PicOS 2.1.0.
Pica8, Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The information is provided “as is” without warranty of any kind, and is subject to change without notice.

L2/L3 Configuration Guide, PicOS 2.1.0.
Table of Contents

TABLE OF CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended Audience</td>
<td>6</td>
</tr>
<tr>
<td>PicOS Documents</td>
<td>6</td>
</tr>
<tr>
<td>Organization</td>
<td>6</td>
</tr>
</tbody>
</table>

CHAPTER 1. OVERVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2/L3Features List</td>
<td>7</td>
</tr>
</tbody>
</table>

CHAPTER 2. SYSTEM MANAGEMENT CONFIGURATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Boot Process</td>
<td>9</td>
</tr>
<tr>
<td>Operation Mode and Configuration Mode</td>
<td>9</td>
</tr>
<tr>
<td>Commit Failed and Exit Discard</td>
<td>11</td>
</tr>
<tr>
<td>Configuring DHCP and a Static IP Address</td>
<td>12</td>
</tr>
<tr>
<td>Configuring DHCP relay</td>
<td>12</td>
</tr>
<tr>
<td>Configuring DHCP option82</td>
<td>13</td>
</tr>
<tr>
<td>Configuring DHCP snooping</td>
<td>13</td>
</tr>
<tr>
<td>Configuring a User Account</td>
<td>14</td>
</tr>
<tr>
<td>Configuring AAA (Authentication/Authorization/Accounting)</td>
<td>17</td>
</tr>
<tr>
<td>Configuring SSH and Telnet Parameters</td>
<td>17</td>
</tr>
<tr>
<td>Configuring the Log-inACL</td>
<td>18</td>
</tr>
<tr>
<td>Configuring NTP and the Timezone Parameter</td>
<td>19</td>
</tr>
<tr>
<td>Configuring IPFIX</td>
<td>19</td>
</tr>
<tr>
<td>ConfiguringviewsFlow</td>
<td>19</td>
</tr>
<tr>
<td>Configuring SNMP</td>
<td>20</td>
</tr>
<tr>
<td>Configuring theSyslog Log Level</td>
<td>21</td>
</tr>
<tr>
<td>Configuring theSyslog Disk</td>
<td>22</td>
</tr>
<tr>
<td>Updating the PicOS Software and Platform</td>
<td>23</td>
</tr>
<tr>
<td>Displaying System Information</td>
<td>24</td>
</tr>
<tr>
<td>Technical Support</td>
<td>25</td>
</tr>
<tr>
<td>Flushing ARP and the Neighbor Table</td>
<td>26</td>
</tr>
<tr>
<td>Rebooting the System</td>
<td>26</td>
</tr>
<tr>
<td>Displaying the Debugging Message</td>
<td>27</td>
</tr>
<tr>
<td>Installing Software</td>
<td>28</td>
</tr>
</tbody>
</table>

CHAPTER 3. FILE MANAGEMENT CONFIGURATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing ConfigurationFiles</td>
<td>30</td>
</tr>
<tr>
<td>Displaying Your Current Configuration</td>
<td>32</td>
</tr>
<tr>
<td>Saving your Current Configuration as the Default Configuration</td>
<td>33</td>
</tr>
<tr>
<td>Rolling Back a Configuration</td>
<td>33</td>
</tr>
<tr>
<td>Managing Configuration Files</td>
<td>33</td>
</tr>
<tr>
<td>Saving, Applying, Executing and Loading Configuration Files</td>
<td>35</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 4. Layer 2 Switching Configuration

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring LLDP (Link Layer Discovery Protocol)</td>
<td>37</td>
</tr>
<tr>
<td>Static Link Aggregation Configuration</td>
<td>37</td>
</tr>
<tr>
<td>Link Aggregation Control Protocol (LACP) Configuration</td>
<td>38</td>
</tr>
<tr>
<td>MLAG Configuration Guide</td>
<td>39</td>
</tr>
<tr>
<td>Configuring base MLAG example</td>
<td>40</td>
</tr>
<tr>
<td>Ethernet Port Configuration</td>
<td>42</td>
</tr>
<tr>
<td>Storm Control in Ethernet Port Configuration</td>
<td>47</td>
</tr>
<tr>
<td>Static MAC entries and Dynamic MAC Address Learning</td>
<td>49</td>
</tr>
<tr>
<td>Cut-through Mode Configuration</td>
<td>49</td>
</tr>
<tr>
<td>Configuring Mirroring</td>
<td>50</td>
</tr>
<tr>
<td>802.1Q Basic Port Configuration</td>
<td>50</td>
</tr>
<tr>
<td>VLAN Configuration Example</td>
<td>52</td>
</tr>
<tr>
<td>Q-in-Q Basic Port Configuration</td>
<td>54</td>
</tr>
<tr>
<td>Q-in-Q Configuration Example</td>
<td>57</td>
</tr>
<tr>
<td>MSTP Configuration</td>
<td>63</td>
</tr>
<tr>
<td>PVST Configuration</td>
<td>66</td>
</tr>
<tr>
<td>MSTP Configuration Example</td>
<td>69</td>
</tr>
<tr>
<td>PVST Configuration Example</td>
<td>84</td>
</tr>
<tr>
<td>Buffer Management Configuration</td>
<td>88</td>
</tr>
<tr>
<td>BPDU Tunneling Configuration</td>
<td>89</td>
</tr>
<tr>
<td>BPDU Tunneling Configuration Example</td>
<td>90</td>
</tr>
<tr>
<td>Configuring Flex Links</td>
<td>92</td>
</tr>
<tr>
<td>UDLD Protocol Configuration</td>
<td>93</td>
</tr>
<tr>
<td>Configuring IPv6 RA Guard</td>
<td>94</td>
</tr>
</tbody>
</table>

Chapter 5. Layer 3 Routing Configuration

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer3 VLAN Interface Configuration</td>
<td>97</td>
</tr>
<tr>
<td>ARP Configuration</td>
<td>98</td>
</tr>
<tr>
<td>Dynamic ARP Inspection---DAI</td>
<td>98</td>
</tr>
<tr>
<td>Static Routing Configuration</td>
<td>100</td>
</tr>
<tr>
<td>Static Routing Configuration Example</td>
<td>101</td>
</tr>
<tr>
<td>RIPv2 Routing Protocol Configuration</td>
<td>104</td>
</tr>
<tr>
<td>RIPv2 Routing Configuration Example</td>
<td>106</td>
</tr>
<tr>
<td>OSPF Routing Protocol Configuration</td>
<td>109</td>
</tr>
<tr>
<td>OSPF Routing Basic Configuration Example</td>
<td>110</td>
</tr>
<tr>
<td>OSPF Configuration Example: NSSA/Stub/Normal</td>
<td>114</td>
</tr>
<tr>
<td>OSPF Stub Area/NSSA Summary</td>
<td>117</td>
</tr>
<tr>
<td>OSPF Virtual Link Configuration Guide</td>
<td>118</td>
</tr>
<tr>
<td>OSPF Area Range Configuration Guide</td>
<td>122</td>
</tr>
<tr>
<td>Importing an External Route into an OSPF Area</td>
<td>124</td>
</tr>
<tr>
<td>BFD Protocol Configuration</td>
<td>126</td>
</tr>
<tr>
<td>BFD Basic Configuration Example</td>
<td>128</td>
</tr>
<tr>
<td>BGP Configuration Guide</td>
<td>131</td>
</tr>
<tr>
<td>BGP Basic Configuration Example</td>
<td>137</td>
</tr>
<tr>
<td>BGP Route Reflector Configuration Example</td>
<td>144</td>
</tr>
<tr>
<td>BGP Confederation Example</td>
<td>149</td>
</tr>
<tr>
<td>BGP Load Balancing Configuration Example</td>
<td>155</td>
</tr>
<tr>
<td>Configuring ECMP (Equal-Cost Multipath Routing)</td>
<td>162</td>
</tr>
<tr>
<td>Configuring VRRP (Virtual Router Redundancy Protocol)</td>
<td>164</td>
</tr>
<tr>
<td>IPv6 Neighbor Configuration</td>
<td>165</td>
</tr>
<tr>
<td>IPv6 Static Routing Configuration</td>
<td>165</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

OSPFv3 Routing Protocol Configuration .. 166
ACL and Filter Configuration ... 168

CHAPTER 6. MULTICAST CONFIGURATION ... 171
 IGMP Snooping Configuration .. 171
 IGMP Configuration ... 172
 PIM-SM Configuration ... 173
 PIM-SM Configuration Example .. 175

CHAPTER 7. QOS CONFIGURATION ... 179
 Configuring QoS .. 179

CHAPTER 8. OPENFLOW CONFIGURATION ... 181
 OpenFlow Introduction ... 181
 OpenFlow Basic Configuration .. 184
 Group table Configuration ... 188
 Crossflow Configuration Example ... 191
Preface

Intended Audience

This guide is intended for data center administrators, system administrators, and customer service staffs responsible for monitoring or configuring PicOS L2/L3.

PicOS Documents

Organization

This configuration guide is organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chap 1. Overview</td>
<td>Provides an overview of the L2/L3 switch</td>
</tr>
<tr>
<td>Chap 2. System Management Configuration</td>
<td>Describes system management configurations</td>
</tr>
<tr>
<td>Chap 3. File Management Configuration</td>
<td>Describes file management configurations</td>
</tr>
<tr>
<td>Chap 4. Layer 2 Switching Configuration</td>
<td>Describes Layer 2 switching configuration steps</td>
</tr>
<tr>
<td>Chap 5. Layer 2 Switching Configuration</td>
<td>Describes Layer 3 routing configuration steps</td>
</tr>
<tr>
<td>Chap 6. Multicast Configuration</td>
<td>Describes multicast configuration steps</td>
</tr>
<tr>
<td>Chap 7. QoS Configuration</td>
<td>Describes QoS configuration steps</td>
</tr>
<tr>
<td>Chap 8. OpenFlow Configuration</td>
<td>Describes OpenFlow configuration steps</td>
</tr>
</tbody>
</table>
Chapter 1. Overview

This chapter provides an overview of PicOS L2/L3 features, including Layer2 switching and Layer3 routing.

L2/L3 Features List

PicOS L2/L3 supports Layer2 switching (STP, RSTP, MSTP, MAC learning, Q-in-Q) and Layer3 routing (static routing, RIPv2, OSPF, IGMP, PIM-SM, IPv6):

<table>
<thead>
<tr>
<th>Category</th>
<th>Functional Requirement</th>
</tr>
</thead>
</table>
| System Management & Administration | Support for clock/date setting and NTP
| | Support for inband IP access via any routed interface
| | Support for DHCP client, DHCP relay, DHCP Option 82 and DHCP snooping
| | Support for multiple local user accounts
| | Support for SSHv2 protocol
| | Ability to enable debugging for a specific module
| | Support for Read Only and Read Write access SNMP
| | Support for IPFIX, monitors data flow in specified server |
| Device Configuration, Software, & File Management | Device configuration can be saved to flash on the device
| | Support for configuration versioning and rollback; compares the two configurations for differences
| | Ability to import/export configuration files, device software, and logs from a file on a remote server (ftp/scp as possible options)
| | Ping tool and Traceroute tool from CLI
| | SSH tool and telnet tool from CLI
| | Ability to view and configure MAC/ARP table information |
| Layer2 Forwarding and Protocol | Support for LLDP protocols for detecting devices on a link
| | Support for LACP protocol and hashing of traffic using Src/Dst MAC address, Src/Dst IP address, and Layer4 port information and mlag
| | Support for 802.1q trunked interfaces, for both single and LAG interfaces
| | Support for 802.1q tagged/untagged interfaces and native tags
| | Support for Q-in-Q
| | Support for Jumbo Frame
| | Support for 802.1d Spanning Tree Protocol (STP)
| | Support for 802.1w rapid STP (RSTP) and Per-VLAN Spanning Tree (PVST)
| | Support for 802.1s Multiple Spanning Tree protocol (MSTP)
| | Support for functionality of BPDU Guard/Filter/UDLD etc.
| | Support for storm-control for unicast, multicast, broadcast
<p>| | Support foringress/egress port mirroring |</p>
<table>
<thead>
<tr>
<th>Layer3 Forwarding and Routing Protocol</th>
<th>Support for 802.1p in Layer2 forwarding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Support for Flow control per-interface</td>
</tr>
<tr>
<td></td>
<td>Support for IGMP snooping enable per-VLAN</td>
</tr>
<tr>
<td></td>
<td>Support for IGMP snooping querier per-VLAN</td>
</tr>
<tr>
<td></td>
<td>Full support for dual stacked IPv4 and IPv6 addressing.</td>
</tr>
<tr>
<td></td>
<td>Support for 6 members in a Layer3 LAG interface</td>
</tr>
<tr>
<td></td>
<td>Support for IPv4 and IPv6 static route configuration</td>
</tr>
<tr>
<td></td>
<td>Support for OSPFv2 (IPv4)</td>
</tr>
<tr>
<td></td>
<td>Support for stub, normal, and NSSA OSPF area types</td>
</tr>
<tr>
<td></td>
<td>Support for up to 32 equal-cost routes in OSPF</td>
</tr>
<tr>
<td></td>
<td>Support for RIP routing protocol</td>
</tr>
<tr>
<td></td>
<td>Support for BGP routing protocol and BFD</td>
</tr>
<tr>
<td></td>
<td>Support for 128 equal-cost routes in the device’s routing/forwarding tables</td>
</tr>
<tr>
<td></td>
<td>Support for ECMP routing with hashing of traffic using Src/Dst IP and Port</td>
</tr>
<tr>
<td></td>
<td>Support the ToS and DSCP in Layer3 forwarding</td>
</tr>
<tr>
<td></td>
<td>Support for IGMP v1/v2</td>
</tr>
<tr>
<td></td>
<td>Support for PIM-SM multicast routing</td>
</tr>
<tr>
<td></td>
<td>Support for VRRP protocol</td>
</tr>
</tbody>
</table>
Chapter 2. System Management Configuration

Overview

This chapter describes the configuration steps for the system management, DHCP, and setting up a user account.

The Boot Process

Before receiving the switch’s boot information, you should make sure the switch has been connected in the console port with the correct baud rate, data bits value, and stop bits value.

- The baud rate is 115200.
- The data bits value is 8.
- The stop bits value is 1.

The output message of the boot-up is shown below:

```
U-Boot 1.3.0 (Mar  8 2011 - 16:39:03)
CPU:   8541, Version: 1.1, (0x80720011)
Core:  E500, Version: 2.0, (0x80200020)
Clock Configuration:
    CPU: 825 MHz, CCB: 330 MHz,
    DDR: 165 MHz, LBC:  41 MHz
L1:  D-cache 32 KB enabled
    I-cache 32 KB enabled
I2C:  ready
DRAM: Initializing
      initdram robin1
      initdram robin2
      robin before CFG_READ_SPD
      robin after CFG_READ_SPD
      initdram robin3
      DDR: 512 MB
      FLASH: 32 MB
L2 cache 256KB: enabled
In:    serial
Out:   serial
Err:   serial
Net:   TSEC0, TSEC1
IDE:   Bus 0: OK
      Device 0: Model: CF 512MB Firm: 20060911 Ser#: TSS25016070309051750
      Type: Hard Disk
      Capacity: 495.1 MB = 0.4 GB (1014048 x 512)
Hit any key to stop autoboot:  5
```

Note: You can modify the baud rate of the switch. For that, enter the U-Boot and configure the baud rate (or other parameters).

Example:

```
U-Boot 1.3.0 (Sep  8 2010 - 17:20:00)
CPU:   8541, Version: 1.1, (0x80720011)
Core:  E500, Version: 2.0, (0x80200020)
```
Clock Configuration:
- CPU: 825 MHz, CCB: 330 MHz,
- DDR: 165 MHz, LBC: 41 MHz
- L1: D-cache 32 kB enabled
- I-cache 32 kB enabled
- I2C: ready
- DRAM: Initializing
- DDR: 512 MB
- FLASH: 32 MB
- L2 cache 256KB: enabled
- Set ethaddr MAC address = c8:0a:a9:04:49:1a
- Set eth1addr MAC address = c8:0a:a9:04:49:1b
- In: serial
- Out: serial
- Err: serial
- Net: TSEC0, TSEC1
- IDE: Bus 0: OK
- Device 0: Model: CF Card Firm: Ver2.35 Ser#: 7DF7070703070224009
 Type: Hard Disk
 Capacity: 1923.9 MB = 1.8 GB (3940272 x 512)
- Hit any key to stop autoboot: 0

[Interrupt the Boot sequence to enter the “U-boot” mode.]

>>
>> printenv
flash_bootcmd=setenv bootargs root=/dev/ram console=ttys0,$baudrate; bootm ffd00000 ff000000 ffe0000
 cfcard_bootcmd=setenv bootargs root=/dev/ram console=ttys0,$baudrate; ext2load ide 0:1 0x1000000 /uImage;ext2load ide 0:1 0x2000000 /uInitrd;/LB9A.dtb;bootm 1000000 2000000 400000 bootdelay=5 baudrate=115200 loads_echo=1 rootpath=/nfsroot netmask=255.255.255.0 hostname=LB9A_X loadaddr=4000000 ethact=TSEC0 ipaddr=10.10.50.60 gatewayip=10.10.50.1 serverip=10.10.50.16 bootfile=u-boot.bin filesize=100000 fileaddr=2000000
>> set baudrate115200
>> save
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...
 done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors
>> reset

You should not interrupt the default boot process unless you want to upgrade, fix the file system or change the console port settings (see documentation about upgrading or downgrading a Pica8 Switch).

PicOS can run in 2 modes:
- L2/L3 Mode (could be used for mizing OpenVSwitch and traditional L2/L3 as well). This is the default mode.
- OpenVSwitch mode. In this mode the Switch will be completely dedicated to OpenVSwitch.
The system has 2 default users: root and admin. The default password to both of them is “pica8”. If you login as root, system will drop into Linux shell and you have the Linux root privilege. To change the switch mode (L2/L3 or OVS), using admin will bring the switch into the L2/L3 mode by default.

If you want to change the PicOS boot mode (from L2/L3 to OVS for example), you have to log as root user and use the command “picos_boot”. The switch will display the software menu as follows:

```
XorPlus login: root
Password:

root@XorPlus# picos_boot
Please configure the default system start-up options:
(Press other key if no change)
[1] PicOS L2/L3
[2] PicOS Open vSwitch/OpenFlow
[3] No start-up options  * default

Enter your choice (1,2,3):
```

Option 1, PicOS L2/L3 is Xorplus. when you choose option1, after a reboot PicOS will load Xorplus.
Option 2, OpenvSwitch (OVS), is an open source project ported to PicOS (refer to PicOS OVS Configuration Guide for details) when you choose option2, after a reboot PicOS will load OpenvSwitch.

This configuration guide is describing the behavior of PicOS in L2/L3 Mode (Option 1).

In L2/L3 mode, the login session should look like the following:

```
Synchronizing configuration...OK.
Pica8 PicOS Version 2.1
Welcome to PicOS L2/L3 on XorPlus

XorPlus>
```

Operation Mode and Configuration Mode

1. **Operation mode**
 By default, the switch’s operation mode is activated when it starts up.

   ```
   %Welcome to PicOS L2/L3 on XorPlus
   XorPlus>
   ```

2. **Configuration mode**
 Activate the configuration mode by entering the `configure` command. For the remainder of this document, be sure to enter the configuration mode if you see the `XorPlus#` prompt.

   ```
   XorPlus> configure
   Entering configuration mode.
   There are no other users in configuration mode.
   [edit]
   XorPlus#
   ```

Commit Failed and Exit Discard

1. Exiting the configuration mode without uncommitted configurations

   ```
   XorPlus> commit
   commit failed
   ```
Switch to the execution mode from the configuration mode without any uncommitted configurations.

XorPlus# exit
XorPlus>

(2) Exiting the configuration mode with uncommitted configurations
Use the exit discard command to enter the execution mode from the configuration mode with any uncommitted or failed committed configurations.

XorPlus# set interface gigabit-ethernet ge-1/1/1 disable true
[edit]
XorPlus# exit
ERROR: There are uncommitted changes.
Use "commit" to commit the changes, or "exit discard" to discard them.
XorPlus# exit discard
XorPlus>

Configuring DHCP and a Static IP Address

(1) Enabling DHCP
By default, DHCP is enabled on the management interface eth0. You can enable DHCP manually with the following CLI command:

XorPlus# set interface management-ethernet eth0 address dhcp
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus>

(2) Configuring a static IP address and gateway
Configure your management interface eth0 with a static IP address.

XorPlus# set interface management-ethernet eth0 address 192.168.1.5/24
[edit]
XorPlus# set interface management-ethernet eth0 gateway 192.168.1.1
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus>

Configuring DHCP relay

(1) Enabling DHCP relay in a VLAN interface
When you enable DHCP relay in a VLAN interface, the switch will relay the received DHCP request to the specified DHCP server via routing. Usually, the port connects to DHCP server should be a trusted port. So, users should configure this port trust true.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 192.168.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 192.168.2.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 192.168.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 192.168.2.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols dhcp relay vlan-interface vlan-2 disable false
[edit]
XorPlus# set protocols dhcp relay vlan-interface vlan-2 dhcp-server-address1 192.168.2.100
[edit]
XorPlus# set protocols dhcp snooping port ge-1/1/2 trust true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols dhcp snooping port ge-1/1/3 trust true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols dhcp snooping port ge-1/1/3 trust true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

Configuring DHCP option82

Option82 is a relay agent information option in DHCP message. It is used to specify the DHCP client location information to DHCP server in DHCP relay. By default, DHCP option82 is disabled. Users can modify the circuit-id of option82.

1. **Enable DHCP option82**

 XorPlus# set protocols dhcp option82 disable false
 [edit]
 XorPlus# commit
 Merging the configuration.
 Commit OK.
 Save done.
 [edit]

2. **Modify the circuit-id of option82**

 XorPlus# set protocols dhcp relay port ge-1/1/3 circuit-id v100
 [edit]
 XorPlus# commit
 Merging the configuration.
 Commit OK.
 Save done.
 [edit]

Configuring DHCP snooping

DHCP snooping will create a table for mapping between IP address, MAC address, port, etc. By default, DHCP snooping is disabled. Users can enable DHCP snooping and configure DHCP snooping binding file, port, and timeout. By default, the snooping port is untrusted port.

1. **Enable DHCP snooping**

 XorPlus# set protocols dhcp snooping disable false
 [edit]
 XorPlus# commit
 Commit OK.
 Save done.
(2) Configure DHCP snooping binding file and timeout
XorPlus# set protocols dhcp snooping binding file /tmp/run/dhcp_bind //sync the dhcp snooping table to disk
XorPlus# set protocols dhcp snooping binding timeout 8
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.

(3) Configure DHCP snooping trust port
XorPlus# set protocols dhcp snooping port ge-1/1/2 trust true //(DHCP reply is trusted), usually, the port connect to DHCP server should be enable this.
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.

(4) Display the DHCP snooping table of host information
XorPlus# run show dhcp snooping
Total count: 1
MAC Address IP Address Port VLAN ID VLAN Interface
----------------- ------------- ------------ -------- ----------------
00:1d:09:fa:a1:b4 192.168.1.10 ge-1/1/1 2 vlan2

Configuring a User Account
There are two types of user accounts, super-user and read-only. By default, the newly created user account is read-only.

(1) Creating a user class and password
XorPlus# set system login user ychen authentication plain-text-password pica8
XorPlus# set system login user ychen class super-user
XorPlus# commit
Commit OK.
Save done.

(2) Configuring a telnet announcement
XorPlus# set system login announcement "welcome the switch-1101"
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
Configuring AAA (Authentication/Authorization/Accounting)

PicOS L2/L3 supports AAA (Authentication/Authorization/Accounting). A user who is authenticated by the AAA server (referred to as “admin” in our guide) may configure the switch. PicOS L2/L3 supports TACACS+ and RADIUS protocols. RADIUS protocols only support two levels: read-only and super-user.

Configure the local switch and server as shown below:

(1) Configuring AAA in the switch

- Configure the tacacs enable
  ```
  XorPlus# set system aaa tacacs-plus disable false
  [edit]
  XorPlus# set system aaa tacacs-plus key pica8
  [edit]
  XorPlus# set system aaa tacacs-plus server-ip 10.10.53.53
  [edit]
  XorPlus# commit
  Commit OK.
  Save done.
  [edit]
  XorPlus# set system aaa tacacs-plus authorization true
  [edit]
  XorPlus# set system aaa tacacs-plus accounting true
  XorPlus# commit
  ```

- Configure the radius enable
  ```
  XorPlus# set system aaa radius authorization disable false
  [edit]
  XorPlus# set system aaa radius authorization server-ip 10.10.50.41 shared-key testing123
  [edit]
  XorPlus# commit
  Merging the configuration.
  Commit OK.
  Save done.
  [edit]
  XorPlus#
  ```

(2) Displaying AAA information

```
XorPlus# show system aaa tacacs-plus
Waiting for building configuration.
  authorization: true
  accounting: true
  server-ip 10.10.53.53
  key: "pica8"

XorPlus# show system aaa radius
Building the configuration.
  authorization [ disable: false
  server-ip 10.10.50.41 ( shared-key: "testing123"
```
(3) Configuring the AAA server

Configure the AAA server configuration file as follows:

Tacacs server configuration:

```yaml
accounting {
    disable: false
    server-ip 10.10.50.41 {
        shared-key: "testing123"
    }
}
```

Accounting File

```yaml
accounting_file = /var/tmp/acctfile
default_authentication = file /etc/passwd
```

User Configuration

```yaml
user = admin {
    member = admins
}
group = admins {
    global = cleartext "password"
    service = exec {
        default_attribute = permit
    }
}
user = operator {
    global = cleartext "operator"
    service = exec {
        default_attribute = permit
    }
}
user = ychen {
    global = cleartext "ychen"
    member = admins
    service = exec {
        default_attribute = permit
    }
}
```

Users should add "/usr/share/freeradius/dictionary.pica8" to radius server before the configuration.

Radius server configuration:

```yaml
operator  Cleartext-Password := "testing"
    Service-Type = Framed-User,
    Framed-Protocol = PPP,
    Framed-IP-Address = 172.16.3.33,
    Framed-IP-Netmask = 255.255.255.0,
    Framed-Routing = Broadcast-Listen,
    Framed-Filter-Id = "std.ppp",
    Framed-MTU = 1500,
    Framed-Compression = Van-Jacobsen-TCP-IP,
    Class = "read-only"
```

```yaml
ychen  Cleartext-Password := "testing"
    Service-Type = Framed-User,
    Framed-Protocol = PPP,
    Framed-IP-Address = 172.16.3.33,
    Framed-IP-Netmask = 255.255.255.0,
    Framed-Routing = Broadcast-Listen,
    Framed-Filter-Id = "std.ppp",
```
Following the configuration above, the admin or operator can access the switch via telnet or SSH. Any valid CLI commands executed by the admin or operator will be recorded to the specified accounting file. In our example above, the accounting file is /var/tmp/acctfile.

(4) Configuring the local log-in

```
XorPlus# set system aaa local disable true
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
```

In the configuration above, you cannot log in to the switch with a local account.

Configuring SSH and Telnet Parameters

(1) Configuring the SSH connection limit

```
XorPlus# set system services ssh protocol-version v2
[edit]
XorPlus# set system services ssh connection-limit 5
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Disabling telnet service

```
XorPlus# set system services telnet disable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Enabling and disabling inband service

By default, SSH and telnet with inband interfaces are disabled. You can enable inband service by entering the command below:

```
XorPlus# set system inband enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```
Configuring the Log-in ACL

(1) Configuring the log-in ACL

Configure the ACL to control whether remote hosts within specified subnetworks are allowed to log in to the system. In our example, remote hosts from both subnetworks that we configured may log in.

```
XorPlus# set system login-acl network 192.168.1.0/24
[edit]
XorPlus# set system login-acl network 192.168.100.100/32
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

Configuring NTP and the Timezone Parameter

(1) Configuring the NTP server IP address

The L2/L3 switch synchronizes with the NTP server only when the configuration command lines are committed. You can change the NTP server IP address, as shown below:

```
XorPlus# set system ntp-server-ip 192.168.10.100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(2) Configuring the time zone

Configure the time zone as follows (we selected Pacific/Kosrae for our example):

```
XorPlus# set system timezone Pacific/Kosrae
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(3) Configuring the system clock

```
XorPlus> set date 2012.01.01-23:59
Sun Jan 1 23:59:00 utc 2012
XorPlus>.
```

The clock will be set in the hardware.

Configuring IPFIX

(1) Configuring IPFIX parameters

By default, IPFIX is disabled. You can enable IPFIX and configure its parameters as shown below. Make sure the switch can connect to the IPFIX collector server correctly.

```
XorPlus# set protocols ipfix collector 192.168.2.10udp-port 9999
```
Configuring sFlow

(1) Globally enabling sFlow

By default, sFlow is disabled. You can enable sFlow and configure its parameters. Check that the switch can connect to the sFlow collector server correctly, and be sure to configure the sFlow agent-id and source-address at the same time that you enable sFlow, as shown below:

```
XorPlus# set protocols sflow disable false
[edit]
XorPlus# set protocols sflow agent-id 10.10.50.248
[edit]
XorPlus# set protocols sflow source-address 10.10.50.248
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(2) Configuring sFlow parameters

You can configure global parameters for sFlow, including agent-id, collector IP, polling-interval, sampling-rate, and source-address.

```
XorPlus# set protocols sflow agent-id 10.10.50.248
[edit]
XorPlus# set protocols sflow collector 10.10.50.221 udp-port 6343
[edit]
XorPlus# set protocols sflow polling-interval 30
[edit]
XorPlus# set protocols sflow sampling-rate ingress 2000
[edit]
XorPlus# set protocols sflow sampling-rate egress 2000
[edit]
XorPlus# set protocols sflow header-len 128
[edit]
XorPlus# set protocols sflow source-address 10.10.50.248
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# run show sflow
sFlow           : Enabled
Agent ID        : 10.10.50.248
Source Address   : 10.10.50.248
Sample rate ingress: 1:2000
Sample rate egress : 1:2000
Polling interval : 30 seconds
Header Length    : 128
XorPlus#
XorPlus# run show sflow collector
```
(3) Configuring sFlow on a specific interface

You can configure sFlow parameters on a specific interface:

```
XorPlus# set protocols sflow interface ge-1/1/1 polling-interval 100
[edit]
XorPlus# set protocols sflow interface ge-1/1/1 sampling-rate egress 1800
[edit]
XorPlus# set protocols sflow interface ge-1/1/1 sampling-rate ingress 1500
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

XorPlus# run show sflow interface

```
Interface    Status       Sample rate    Polling interval    Header length
Ingress    Egress
----------    -------    ----------    -------------------
ge-1/1/1     Enabled   1500       1800       100                 64
```

In the current version, sFlow samples only the ingress traffic of each interface. You can monitor the traffic with sFlowTrend as follows:
Configuring SNMP

(1) Configuring SNMP parameters
By default, SNMP is disabled. You can enable SNMP and configure its parameters (e.g. community, contact, location) as shown below:

```
XorPlus# set protocols snmp community Pica8-data-center
[edit]
XorPlus# set protocols snmp community Pica8-data-center authorization read-only
[edit]
XorPlus# set protocols snmp contact support@pica8.com
[edit]
XorPlus# set protocols snmp location Beijing
[edit]
XorPlus# set protocols snmp trap-group targets 10.10.1.1
[edit]
XorPlus# set protocols snmp trap-group version v2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Configuring an SNMP ACL
By default, all hosts can “snmpwalk” the information of the switch. Configure an SNMP ACL to control which hosts within the subnetwork may snmpwalk the switch.

```
XorPlus# set system snmp-acl network 1.1.1.0/24
[edit]
XorPlus# set system snmp-acl network 2.2.2.0/24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Configuring SNMPset
Users can use “snmpset” (OID 1.3.6.1.4.1.35098.2.0.0) to load configuration and also can use “snmpset” (OID 1.3.6.1.4.1.35098.2.1.0) to delete or load the configure. But only set & delete commands can be included in the command batch which oid is 1.3.6.1.4.1.35098.2.1.0. Other commands would be invalid and ignored. And it can not clear the dependent configuration.

```
XorPlus# set protocols snmp community private authorization read-write
[edit]
XorPlus# commit
```
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

Examples of snmpset application (using one server):
(a) using snmpset to load a filter configuration
 root@dev:~# snmpset -v 2c -c private IP.13.6.1.4.1.35098.2.0.0 s "tftp:1.1.5.1:/pica8/acl.conf"
 iso.3.6.1.4.1.35098.2.0.0 = STRING: "tftp:1.1.5.1:/pica8/acl.conf"
(b) using snmpset to delete a filter configuration
 root@dev:~# snmpset -v 2c -c private IP.13.6.1.4.1.35098.2.1.0 s "tftp:1.1.5.1:/pica8/delete-acl.conf"
 iso.3.6.1.4.1.35098.2.0.0 = STRING: "tftp:1.1.5.1:/pica8/delete-acl.conf"

Configuring the Syslog Log Level

1. Configuring the syslog level
 - There are 5 system syslog levels: Fatal, Error, Warning, Info, and Trace (listed in order, from most severe to least severe). By default, the system is set to a log level of Warning, but can be changed to a different log level.

 In the example below, the system will log messages for Info, Warning, Error, and Fatal, since the system syslog level is set to Info.

 XorPlus# set system log-level info
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus#

 You can display the log messages on the console screen by entering the following command:

 XorPlus# exit
 XorPlus> syslog monitor on

 If the switch’s syslog level is Trace, the trace options of the modules should be turned on, as shown below. You can also turn on the OSPF trace options for debugging.

 XorPlus# set protocols ospf4 traceoptions flag all disable false
 [edit]
 XorPlus# set system log-level trace
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus# exit
 XorPlus> syslog monitor on

2. Configuring the SNMP logging facility
 - In accordance with the syslog standard, the logging facility can be configured as [0, 7].

 XorPlus# set system log-facility 0
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
Configuring the Syslog Disk

1. **Configuring the syslog host**
 After you configure the syslog server IP address, the log files will be sent to the syslog server.
   ```
   XorPlus# set system syslog host 192.168.1.1 [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   ```

2. **Configuring syslog for local storage**
 You can configure syslog messages to be stored in RAM or in a local SD card.
   ```
   XorPlus# set system syslog local-file disk [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   XorPlus# set system syslog local-file ram [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   ```

Updating the PicOS Software and Platform

You can separate the system’s PicOS Platform and PicOS Software and update them respectively. Generally, `rootfs.tar.gz` will include both the PicOS Platform and PicOS Software, and `pica.tar.gz` will include only the PicOS Software.

1. **Displaying the system version**
   ```
   XorPlus# run show version
   Copyright (C) 2009–2013 Pica8, Inc.
   Base ethernet MAC Address : 08:9e:01:61:65:80
   Hardware model           : P-3290
   PicOS Version            : 2.0
   ```
(2) Updating the PicOS Software

XorPlus> file tftp get remote-file pica.tar.gz local-file pica.tar.gz ip-address 1.1.5.6
XorPlus> configure
XorPlus# save running-to-startup(/save the current config to startup config if necessary)
XorPlus# run request system reboot

The image will be placed under the local installation directory (/cftmp). The system will decompress pica.tar.gz automatically when rebooted, updating only the PicOS Software.

(3) Updating the PicOS Platform

XorPlus> file tftp get remote-file rootfs.tar.gz local-file rootfs.tar.gz ip-address 1.1.5.6
XorPlus> configure
XorPlus# save running-to-startup(/save the current config to startup config if necessary)
XorPlus# run request system reboot

The image will be placed under the local installation directory (/cftmp). The system will decompress rootfs.tar.gz automatically when rebooted, updating both the PicOS Platform and PicOS Software.

Displaying System Information

You can display your system’s information, including fan, power supply unit, and serial number information.

(1) Displaying the system fan

XorPlus> show system fan
Sensor Temperature:
 Sensor 1 Temperature : 42 Centigrade
 Sensor 2 Temperature : 39 Centigrade
 Sensor 3 Temperature : 46 Centigrade
 Sensor 4 Temperature : 33 Centigrade
Fan Status:
 Fan 1 speed = 12529 RPM, PWM = 79
 Fan 2 speed = 12413 RPM, PWM = 79
 Fan 3 speed = 12300 RPM, PWM = 79

(2) Displaying the system power supply unit

XorPlus> show system rpsu
RPSU 1:
 TEMPERATURE_1 : N/A
RPSU 2:
 TEMPERATURE_1 : 38.00 Centigrade
 TEMPERATURE_2 : 40.00 Centigrade
 FAN_SPEED : 10784.0 RPM
 FAN_PWM : 60

(3) Displaying the system serial number

XorPlus> show system serial-number
MotherBoard Serial Number : QTFCXI2460009
RPSU 1 Serial Number : N/A
RPSU 2 Serial Number : 601G10103C370ZG
SFP te-1/1/49 :
 Vendor Name : PICA8
 Serial Number : 78613B10987
Module Type: SR/850nm
Cable Length: 80m
SFP te-1/1/50:
 Vendor Name: JESS-LINK
 Serial Number: 12344D0001
 Cable Length: 5m
SFP te-1/1/51:
 Vendor Name: DELTA
 Serial Number: 08410900001
 Module Type: SR/850nm
 Cable Length: 80m
SFP te-1/1/52:
 Vendor Name: JESS-LINK
 Serial Number: 12344D0002
 Cable Length: 5m

(4) Displaying additional system information

XorPlus# run show system temperature
Temperature: 41 Centigrade
XorPlus#
XorPlus# run show system uptime
01:21:33 up 50 min, load average: 0.04, 0.06, 0.07
XorPlus#
XorPlus# run show system cpu-usage
Cpu usage: 15%
XorPlus#
XorPlus# run show system rollback ?
Possible completions:
 compare Show the difference between two rolled back configurations
 file Show rolled back configuration file
 list Show rolled back file list
XorPlus# run show system rollback compare to 02
637,639d636
< open-flow {
 < working-mode: "l2/l3-mode"
 < "75c750
 < enable: true
 < enable: false
XorPlus#
XorPlus# run show system rollback file 02
/*XORP Configuration File, v1.0*/
interface {
 ecmp {
 max-path: 4
 hash-mapping {
 field {
 ingress-interface {
 disable: true
 }
 vlan {
 disable: true
 }
 ip-protocol {
 disable: true
 }
 ip-source {
 disable: false
 }
 ip-destination {
 disable: false
 }
 port-source {
 disable: false
 }
 }
 }
 }
}
Technical Support

Execute the diagnosis CLI, and receive technical support by sending the diagnosis result report to Pica8.

(1) Executing the diagnosis CLI

```
XorPlus> show tech_support
Start.......:

Item 1: Display system version finished!
Item 2: Display system interface finished!
Item 3: Display system configuration finished!
Item 4: Display system config files finished!
Item 5: Display system process finished!
Item 6: Display system fdb table finished!
Item 7: Display system fdb entries finished!
Item 8: Display system ospf neighbors finished!
Item 9: Display system ospf interfaces finished!
Item 10: Display system route table finished!
Item 11: Get error event from log!
Item 12: Display system hard-route table finished!
Item 13: Display system hard-route for host finished!
Item 14: Display system spanning tree interfaces finished!
Item 15: Display system spanning tree bridge finished!
Item 16: Display system vlans table finished!
Item 17: Display system vlan-interfaces finished!
Item 18: Display system core-dump finished!
Item 19: Display system uptime finished!
Item 20: Display system arp table finished!

The information has been stored in /tmp/XorPlus-201307052220-techSupport.log, please forward to support@pica8.com
```

Flush the ARP and the Neighbor Table

You can manually flush the ARP entry and the IPv6 neighbor table.

(1) Flushing the ARP entry

```
XorPlus> flush arp all
XorPlus> flush arp ip-address 192.168.1.1
```

Rebooting the System

Reboot the system as follows:

(1) Rebooting the system

```
XorPlus> request system reboot
```
U-Boot 1.3.0 (Apr 11 2011 - 10:41:10)

CPU: E541, Version: 1.1, (0x80720011)
Core: E500, Version: 2.0, (0x80200020)
Clock Configuration:
 CPU: 825 MHz, CCB: 330 MHz,
 DDR: 165 MHz, LBC: 41 MHz
L1: 8-byte cache 32 kB enabled
 i-cache 32 kB enabled
I2C: ready
DRAM: Initializing
 DDR: 512 MB
FLASH: 32 MB
L2 cache 256kB: enabled
Set ethaddr MAC address = 60:eb:69:d2:9c:d8
In: serial
Out: serial
Err: serial
Net: TSEC0
IDE: Bus 0: OK
 Device 0: Model: TRANSCEND Firm: 20091130 Ser#: 20100723 C4130E83
 Type: Hard Disk
 Capacity: 1911.6 MB = 1.8 GB (3915072 x 512)

Displaying the Debugging Message

You can configure the debugging message in your current window.

1) Syslog monitor on

 XorPlus> syslog monitor on
 Nov 21 2000 22:27:39 XorPlus local0.warn : [SIF] Interface ge-1/1/3, changed state to up
 Nov 21 2000 22:27:41 XorPlus local0.warn : root logined the switch
 Nov 21 2000 22:41:18 XorPlus local0.info xinetd[1102]: START: telnet pid=7650 from=10.10.50.16
 Nov 21 2000 22:41:23 XorPlus authpriv.debug login[7651]: pam_unix(login:account): account admin has password changed in future
 Nov 21 2000 22:41:26 XorPlus local0.warn : admin logined the switch
 Nov 21 2000 22:55:58 XorPlus local0.info xinetd[1102]: START: telnet pid=8039 from=10.10.51.16
 Nov 21 2000 22:56:01 XorPlus authpriv.debug login[8040]: pam_unix(login:account): account root has password changed in future
 Nov 21 2000 23:31:13 XorPlus local0.info xinetd[1102]: START: telnet pid=9028 from=10.10.50.16
 Nov 21 2000 23:31:16 XorPlus authpriv.debug login[9029]: pam_unix(login:account): account admin has password changed in future
 Nov 21 2000 23:31:21 XorPlus local0.warn : admin logined the switch
 XorPlus>

Installing Software

You can install software that you’d like to have in your Debian system (e.g. make, python, g++) as shown below:

1) Updating the software list on the source server

 root@XorPlus# apt-get update
 Reading package lists... Done
 root@XorPlus#

2) Installing new software

 root@XorPlus# apt-get install make
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
 make-doc
The following NEW packages will be installed:
 make
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
After this operation, 1165 kB of additional disk space will be used.
WARNING: The following packages cannot be authenticated!
 make
Authentication warning overridden.
Fetched 399 kB in 6s (64.1 kB/s)

Selecting previously unselected package make.
(Reading database ... 16155 files and directories currently installed.)
Unpacking make (from .../make_3.81-8.2_powerpc.deb) ...
Processing triggers for man-db ...
fopen: Permission denied
Setting up make (3.81-8.2) ...
root@XorPlus# apt-get install python
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 file libexpat1 libmagic1 mime-support python2.7 python2.7-minimal
Suggested packages:
 python-doc python-tk python2.7-doc binutils bison
The following NEW packages will be installed:
 file libexpat1 libmagic1 mime-support python2.7 python2.7-minimal
 0 upgraded, 8 newly installed, 0 to remove and 0 not upgraded.
Need to get 5045 kB of archives.
After this operation, 18.3 MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
WARNING: The following packages cannot be authenticated!
 libmagic1 libexpat1 file mime-support python2.7 minimal python2.7 minimal python
Authentication warning overridden.
Get:4 http://ftp.tw.debian.org/debian/ stable/main mime-support all 3.52-1 [35.5 kB]
Get:5 http://ftp.tw.debian.org/debian/ stable/main python2.7 Minimal powerpc 2.7.3-6 [1753 kB]
Get:6 http://ftp.tw.debian.org/debian/ stable/main python2.7 powerpc 2.7.3-6 [2639 kB]
Get:7 http://ftp.tw.debian.org/debian/ stable/main python-minimal all 2.7.3-4 [42.6 kB]
Fetched 5045 kB in 18s (267 kB/s)
Selecting previously unselected package libmagic1:powerpc.
(Reading database ... 16189 files and directories currently installed.)
Unpacking libmagic1:powerpc (from .../libmagic1_5.11-2_powerpc.deb) ...
Selecting previously unselected package libexpat1:powerpc.
Unpacking libexpat1:powerpc (from .../libexpat1_2.1.0-1_powerpc.deb) ...
Selecting previously unselected package file.
Unpacking file (from .../file_5.11-2_powerpc.deb) ...
Selecting previously unselected package mime-support.
Unpacking mime-support (from .../mime-support_3.52-1_all.deb) ...
Selecting previously unselected package python2.7-minimal.
Unpacking python2.7-minimal (from .../python2.7-minimal_2.7.3-6_powerpc.deb) ...
Selecting previously unselected package python2.7.
Unpacking python2.7 (from .../python2.7_2.7.3-6_powerpc.deb) ...
Selecting previously unselected package python-minimal.
Unpacking python-minimal (from .../python-minimal_2.7.3-4_all.deb) ...
Selecting previously unselected package python.
Unpacking python (from .../python_2.7.3-4_all.deb) ...
fopen: Permission denied
Setting up libmagic1:powerpc (5.11-2) ...
Setting up libexpat1:powerpc (2.1.0-1) ...
Setting up file (5.11-2) ...
Setting up mime-support (3.52-1) ...
Setting up python2.7= minimal (2.7.3-6) ...
Linking and byte-compiling packages for runtime python2.7...
Setting up python2.7 (2.7.3-6) ...
Setting up python-minimal (2.7.3-4) ...
Setting up python (2.7.3-4) ...
root@XorPlus#

root@XorPlus# apt-get install g++
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
g++-4.6 libstdc++6-4.6-dev
Suggested packages:
g++-multilib g++-4.6-multilib gcc-4.6-doc libstdc++6-4.6-dev
The following NEW packages will be installed:
g++ g++-4.6 libstdc++6-4.6-dev
0 upgraded, 3 newly installed, 0 to remove and 17 not upgraded.
Need to get 0 B/8383 kB of archives.
After this operation, 24.4 MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
WARNING: The following packages cannot be authenticated!
libstdc++6-4.6-dev g++-4.6 g++
Authentication warning overridden.
Selecting previously unselected package libstdc++6-4.6-dev.
(Reading database ... 19555 files and directories currently installed.)
Unpacking libstdc++6-4.6-dev (from .../libstdc++6-4.6-dev_4.6.3-14_powerpc.deb) ...
Selecting previously unselected package g++-4.6.
Unpacking g++-4.6 (from .../g++-4.6.3-14_powerpc.deb) ...
Selecting previously unselected package g++.
Unpacking g++ (from .../g++-4.6.3-8_powerpc.deb) ...
Processing triggers for man-db ...
Setting up libstdc++6-4.6-dev (4.6.3-14) ...
Setting up g++-4.6 (4.6.3-14) ...
Setting up g++ (4.6.3-8) ...
update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode
root@XorPlus#
Chapter 3. File Management Configuration

This chapter describes the configuration files and how to save, rollback, and manage them. With our provided scripts, you can configure multiple switches from a centralized management server.

Managing Configuration Files

You can copy, delete, or rename any configuration files in the system, but do not delete the system files.

1) Listing directory files

You can display the files of a specified directory:

```
XorPlus> file list /
```

<table>
<thead>
<tr>
<th>Mode</th>
<th>Permissions</th>
<th>Owner</th>
<th>Group</th>
<th>Size</th>
<th>Date/Time</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 25 00:54</td>
<td>bin</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 24 06:21</td>
<td>boot</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 23 17:05</td>
<td>cftmp</td>
</tr>
<tr>
<td>-rwx</td>
<td>r-x</td>
<td>1 root</td>
<td>xorp</td>
<td>40559</td>
<td>Sep 23 17:05</td>
<td>config.bcm</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>4 root</td>
<td>root</td>
<td>4096</td>
<td>Sep 25 00:54</td>
<td>dev</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>7 root</td>
<td>root</td>
<td>4096</td>
<td>Sep 25 00:55</td>
<td>etc</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>4 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 24 06:21</td>
<td>lib</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>5 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 24 06:21</td>
<td>mnt</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 23 17:05</td>
<td>opt</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>5 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 24 06:21</td>
<td>ovs</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>14 root</td>
<td>xorp</td>
<td>4096</td>
<td>Sep 24 06:23</td>
<td>pica</td>
</tr>
<tr>
<td>dr-r</td>
<td>x-r</td>
<td>52 root</td>
<td>root</td>
<td>4096</td>
<td>Sep 24 06:21</td>
<td>root</td>
</tr>
<tr>
<td>-rwx</td>
<td>r-x</td>
<td>1 root</td>
<td>xorp</td>
<td>59012</td>
<td>Sep 25 00:55</td>
<td>root</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>5 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 24 06:22</td>
<td>run</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 24 06:23</td>
<td>snmp</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:54</td>
<td>system</td>
</tr>
</tbody>
</table>

```
XorPlus> file list /tmp
```

<table>
<thead>
<tr>
<th>Mode</th>
<th>Permissions</th>
<th>Owner</th>
<th>Group</th>
<th>Size</th>
<th>Date/Time</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>5 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:54</td>
<td>home</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:54</td>
<td>log</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>root</td>
<td>12288</td>
<td>Sep 25 00:54</td>
<td>lost+found</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>3 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:55</td>
<td>run</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:54</td>
<td>snmp</td>
</tr>
<tr>
<td>drwx</td>
<td>r-x</td>
<td>2 root</td>
<td>xorp</td>
<td>1024</td>
<td>Sep 25 00:56</td>
<td>system</td>
</tr>
</tbody>
</table>

(2) Displaying file contents

Display the contents of a specified file:

```
XorPlus> file show /pica/config/pica.conf
/*XORP Configuration File, v1.0*/
interface {
```

--- 1 root root 410 Sep 24 06:23 boot.list
-rw-rw-r-- 1 root xorp 16006 Sep 24 07:44 pica.conf
-rw-rw-r-- 1 root xorp 16003 Sep 24 07:22 pica.conf.01
-rw-rw-r-- 1 root xorp 15826 Sep 24 07:19 pica.conf.02
-rw-rw-r-- 1 root xorp 15536 Sep 24 07:18 pica.conf.03
-rw-rw-r-- 1 root xorp 15915 Sep 24 07:18 pica.conf.04
-rw-rw-r-- 1 root xorp 15567 Sep 24 07:09 pica.conf.05
-rw-rw-r-- 1 root xorp 15188 Sep 24 06:44 pica.conf.06
-rw-rw-r-- 1 root xorp 14953 Sep 24 06:35 pica.conf.07
```

```
XorPlus> file show /pica/config/pica.conf
/*XORP Configuration File, v1.0*/
interface {
(3) Additional file management commands

You can also copy, archive, checksum, compare, rename, and sync files.

```
XorPlus> file list /pica/config
-rw-r--r--  1 root  root       410 Sep 24 06:23 boot.lst
-rw-r--r--  1 root  xorp      16006 Sep 24 07:44 pica.conf
-rw-r--r--  1 root  xorp      15826 Sep 24 07:19 pica.conf.02
-rw-r--r--  1 root  xorp      15536 Sep 24 07:18 pica.conf.03
-rw-r--r--  1 root  xorp      15915 Sep 24 07:18 pica.conf.04
-rw-r--r--  1 root  xorp      15567 Sep 24 07:09 pica.conf.05
-rw-r--r--  1 root  xorp      15188 Sep 24 06:44 pica.conf.06
-rw-r--r--  1 root  xorp      14953 Sep 24 06:35 pica.conf.07
XorPlus> file copy /pica/config/pica.conf /pica/config/ychen.conf
XorPlus> file list /pica/config
-rw-r--r--  1 root  root       410 Sep 24 06:23 boot.lst
-rw-r--r--  1 root  xorp      16006 Sep 24 07:44 pica.conf
-rw-r--r--  1 root  xorp      16003 Sep 24 07:22 pica.conf.01
-rw-r--r--  1 root  xorp      15826 Sep 24 07:19 pica.conf.02
-rw-r--r--  1 root  xorp      15915 Sep 24 07:18 pica.conf.04
-rw-r--r--  1 root  xorp      15567 Sep 24 07:09 pica.conf.05
-rw-r--r--  1 root  xorp      15188 Sep 24 06:44 pica.conf.06
-rw-r--r--  1 root  xorp      14953 Sep 24 06:35 pica.conf.07
drwxrwxrwx  2 root  root      4096 Sep 24 06:25 root
XorPlus> file rename /pica/config/ychen.conf /pica/config/ychen-1.conf
XorPlus> file list /pica/config
```

```
File Management Configuration

Displaying Your Current Configuration

In L2/L3, you can display your non-default configuration with the show command. Display all configurations using the show all command.

XorPlus# show
Waiting for building configuration.
interface []
gigabit-ethernet "ge-1/1/1" { ether-options [ ] }
}
gigabit-ethernet "ge-1/1/2" { ether-options [ ] }
}
gigabit-ethernet "ge-1/1/3" { ether-options [ ] family []
  ethernet-switching [ native-vlan-id: 2 ]
}
}
gigabit-ethernet "ge-1/1/4" { ether-options [ ] family []
  ethernet-switching [ native-vlan-id: 3 ]
}
Saving your Current Configuration as the Default Configuration

You can save your current configuration as the startup configuration. The system loads the startup configuration file after booting up.

```
XorPlus# save running-to-startup
Save done.
```

Rolling Back a Configuration

- Each time you commit a configuration in L2/L3, a rollback configuration file is created (e.g., if you commit the configuration 10 times, then `pica.conf.01 ~ pica.conf.10` will be created). You can rollback any one of these configurations if you wish.

- The maximum rollback file is limited to 50. The current configuration is located in `pica.conf`.

```
XorPlus# rollback 1
Waiting for merging configuration.
Commit OK.
Save done.
```
Managing Configuration Files

- You can display, copy, delete, rename, or compare the configuration files as shown below.

- **pica_startup.boot** denotes the startup and default configuration file.

- **pica.conf** denotes the current configuration file.

```bash
XorPlus> file list pica/config
-rw-r--r-- 1 root root 344 Apr 1 02:27 boot.list
-rw-r--r-- 1 root xorp 10750 Apr 9 09:20 pica.conf
-rw-r--r-- 1 root xorp 10749 Apr 9 09:17 pica.conf.01
-rw-r--r-- 1 root xorp 10619 Apr 9 09:15 pica.conf.02
-rw-r--r-- 1 root xorp 10023 Apr 9 08:56 pica.conf.03
-rw-r--r-- 1 root xorp 9902 Apr 9 08:56 pica.conf.04
-rw-r--r-- 1 root xorp 10238 Apr 9 08:43 pica.conf.05
-rw-r--r-- 1 root xorp 10057 Apr 9 08:43 pica.conf.06
-rw-r--r-- 1 root xorp 11796 Apr 9 08:37 pica.conf.07
-rw-r--r-- 1 root xorp 11796 Apr 9 07:05 pica.conf.08
-rw-r--r-- 1 root xorp 11364 Apr 9 07:02 pica.conf.09
-rw-r--r-- 1 root xorp 10057 Apr 9 07:02 pica.conf.10
-rw-r--r-- 1 root xorp 9625 Apr 9 07:02 pica.conf.11
-rw-r--r-- 1 root xorp 9322 Apr 9 07:02 pica.conf.12
-rw-r--r-- 1 root xorp 10599 Apr 9 06:34 pica.conf.13
-rw-r--r-- 1 root xorp 9947 Apr 9 06:34 pica.conf.14
-rw-r--r-- 1 root xorp 9947 Apr 9 06:34 pica.conf.15
-rw-r--r-- 1 root xorp 9848 Apr 9 06:34 pica.conf.16
-rw-r--r-- 1 root xorp 9947 Apr 9 06:34 pica.conf.17
-rw-r--r-- 1 root xorp 10599 Apr 9 06:33 pica.conf.18
-rw-r--r-- 1 root xorp 9912 Apr 9 06:33 pica.conf.19
-rw-r--r-- 1 root xorp 9702 Apr 9 06:33 pica.conf.20
-rw-r--r-- 1 root xorp 10604 Apr 8 07:47 pica.conf.21
-rw-r--r-- 1 root xorp 10402 Apr 8 07:47 pica.conf.22
-rw-r--r-- 1 root xorp 10402 Apr 8 07:27 pica.conf.23
-rw-r--r-- 1 root xorp 10390 Apr 8 06:47 pica.conf.24
-rw-r--r-- 1 root xorp 10392 Apr 8 06:32 pica.conf.25
-rw-r--r-- 1 root xorp 10203 Apr 8 06:25 pica.conf.26
-rw-r--r-- 1 root xorp 10204 Apr 8 06:08 pica.conf.27
-rw-r--r-- 1 root xorp 10305 Apr 8 03:27 pica.conf.28
-rw-r--r-- 1 root xorp 9774 Apr 8 03:21 pica.conf.29
-rw-r--r-- 1 root xorp 9958 Apr 8 03:20 pica.conf.30
-rw-r--r-- 1 root xorp 9854 Apr 8 03:16 pica.conf.31
-rw-r--r-- 1 root xorp 9807 Apr 8 03:16 pica.conf.32
-rw-r--r-- 1 root xorp 9498 Apr 8 02:57 pica.conf.33
-rw-r--r-- 1 root xorp 9257 Apr 7 10:52 pica.conf.34
-rw-r--r-- 1 root xorp 9073 Apr 7 10:52 pica.conf.35
-rw-r--r-- 1 root xorp 9311 Apr 7 10:46 pica.conf.36
-rw-r--r-- 1 root xorp 9149 Apr 7 10:45 pica.conf.37
-rw-r--r-- 1 root xorp 10750 Apr 9 09:32 pica_startup.boot
```

```bash
XorPlus> file compare pica/config/pica.conf pica/config/pica.conf.01
+++ pica/config/pica.conf.01 Sat Apr 9 09:17:44 2011
@@ -410,8 +410,8 @@
 interface "ge-1/1/3"
 }
 querier {
- enable: true
- address: 10.10.1.1
+ enable: false
+ address: 0.0.0.0
 other-querier-timer: 1
 version: 2
```
Saving, Applying, Executing and Loading Configuration Files

Users can save the current configuration to a file and load or apply it later. Users can load only a complete configuration file as your new configuration file, but you may apply an incomplete configuration file to your running configuration file. Users also can use the “execute” command to load the configuration. But only set, delete and commit commands can be included in the command batch. Other commands would be invalid and ignored.

XorPlus# save ychen.conf
Save done.
[edit]
XorPlus# load ychen.config
Possible completions:
<text>                        Local file name
  ychen.conf                    Size: 10750, Last changed: Sat Apr 9 09:52:11 2011
XorPlus# load ychen.conf
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# apply ychen.config
Possible completions:
<text>                        Local file name
  ychen.configWaiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

execute
Possible completions:
<text>                        Local file name
  ychen1.confWaiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

The file of ychen.conf content like this:

```plaintext
defirewall {
defilter f33 {
defsequence 1 {
deffrom {
}ndefthen {
action: "forward"
}ndef}
definput {
definterface "ge-1/1/1"
}ndef}
```
Chapter 4. Layer2 Switching Configuration

This chapter describes the configuration steps of Layer2 switching, including MAC address learning, LLDP, LACP, 802.1Q VLAN, flow control, mirroring, storm control, and the Spanning Tree Protocol (STP/RSTP/MSTP).

Configuring LLDP (Link Layer Discovery Protocol)

- LLDP is a standard link-layer discovery protocol which can broadcast its capability, IP address, ID, and interface name as TLVs (Type/Length/Value) in LLDP PDUs (Link Layer Discovery Protocol Data Units).

- An LLDP PDU includes 4 basic TLVs and several optional TLVs. Basic TLVs include the Chassis ID, Port ID, TTL, and End TLVs.

- In L2/L3, you can select the following optional TLVs:

<table>
<thead>
<tr>
<th>TLV Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-phy-cfg</td>
<td>MAC address of the system</td>
</tr>
<tr>
<td>management-address</td>
<td>Management IP address of the system</td>
</tr>
<tr>
<td>port-description</td>
<td>The port description of system</td>
</tr>
<tr>
<td>port-vlan</td>
<td>The VLAN ID of the port</td>
</tr>
<tr>
<td>system-capabilities</td>
<td>System capability (e.g. switching, routing)</td>
</tr>
<tr>
<td>system-description</td>
<td>System description</td>
</tr>
<tr>
<td>system-name</td>
<td>System name</td>
</tr>
</tbody>
</table>

(1) Configuring the LLDP mode

LLDP supports 4 modes: TxRx, Tx_only, Rx_only, and Disabled. In TxRx mode, the system transmits and receives LLDPDUs. In Tx_only, the system only transmits LLDPDUs. In Rx_only, the system only receives LLDPDUs. In Disabled, the system will not transmit or receive any LLDPDUs.

You can configure the system as shown below:

```
XorPlus# set protocols lldp enable true
[edit]
XorPlus# set protocols lldp interface ge-1/1/1 status tx_rx
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```
(2) Selecting optional TLVs

```
XorPlus# set protocols lldp tlv-select mac-phy-cfg true
[edit]
XorPlus# set protocols lldp tlv-select management-address true
[edit]
XorPlus# set protocols lldp tlv-select port-description true
[edit]
XorPlus# set protocols lldp tlv-select system-capabilities true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Displaying LLDP information

```
XorPlus# show protocols lldp
Waiting for building configuration:
 enable: true
tlv-select {
}
```

(4) Configuring other parameters

You can configure other parameters (e.g. advertisement-interval, hold-time-multiplier, reinit-delay,transmit-delay) in a similar manner.

---

**Static Link Aggregation Configuration**

- You can configure up to 24 LAGs in L2/L3, and each LAG can have up to 8 member ports.

- Both static and LACP LAGs can support the hashing of traffic using the Src/Dst MAC address, the Src/Dst IP address, and Layer 4 port information.

- If all member ports of a LAN are link-down, the LAG will be link-down. The LAG will become link-up when at least one member port is link-up.

- The logical function and configuration of LAGs are same as those of a physical port.

(1) Configuring static LAGs

```
XorPlus# set interface aggregate-ethernet ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 ether-options 802.3ad ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 ether-options 802.3ad ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 ether-options 802.3ad ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 ether-options 802.3ad ae1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```
(2) Displaying static LAG information

```
XorPlus# run show interface aggregate-ethernet ae1
Physical interface: ae1, Enabled, Physical link is Up
Interface index: 53
Link-level type: Ethernet, MTU: 1514, Speed: Auto, Duplex: Auto
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Current address: c8:0:a9:9e:14:9f, Hardware address: c8:0:a9:9e:14:9f
Traffic statistics:
 Input Packets............................176
 Output Packets...........................16
 Input Octets.............................12888
 Output Octets............................1594
Aggregated link protocol: STATIC

<table>
<thead>
<tr>
<th>Members</th>
<th>Status</th>
<th>Port Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/1/1</td>
<td>Down</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/2</td>
<td>Down</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/3</td>
<td>Up</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/4</td>
<td>Up</td>
<td>Auto</td>
</tr>
</tbody>
</table>
```

Link Aggregation Control Protocol (LACP) Configuration

- LACP (802.3ad) provides the dynamic link aggregation function.
- The LACPDU includes the LACP system priority, the system’s MAC, the port priority and I.D. The port, included in the LACP LAG, will transmit the LACPDU to its neighbors.
- The configuration of the LACP LAG is similar to that of the static LAG.
- **min-selected-port** denotes that the LAG is up only when no fewer than the defined number of ports are up. Below, our defined number is 4.

(1) Configuring LACP LAGs

```
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options lacp enable true [edit]
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options min-selected-port 4 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 ether-options 802.3ad ae1 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 ether-options 802.3ad ae1 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 ether-options 802.3ad ae1 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 ether-options 802.3ad ae1 [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(2) Displaying LACP LAG information

```
XorPlus# run show interface aggregate-ethernet ae1
Physical interface: ae1, Enabled, Physical link is Down
Interface index: 53
```

© 2013 Pica8 Inc. All Rights Reserved.
**Description:**
Link-level type: Ethernet, MTU: 1514, Speed: Auto, Duplex: Auto
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0

**Traffic statistics:**
- 5 sec input rate 0 bits/sec, 0 packets/sec
- 5 sec output rate 0 bits/sec, 0 packets/sec
- Input Packets: 0
- Output Packets: 0
- Input Octets: 0
- Output Octets: 0

**Aggregated link protocol:** LACP
Minimum number of selected ports: 4

<table>
<thead>
<tr>
<th>Members</th>
<th>Status</th>
<th>Port Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/1/1</td>
<td>up (active)</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/2</td>
<td>up (active)</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/3</td>
<td>up (active)</td>
<td>Auto</td>
</tr>
<tr>
<td>ge-1/1/4</td>
<td>up (active)</td>
<td>Auto</td>
</tr>
</tbody>
</table>

**MLAG Configuration Guide**

Traditionally, an aggregation interface is a logical interface which is used to increase the bandwidth or available
by use of more than one physical interfaces in a switch. While multi-chassis LAG (MLAG) can form a logical
aggregation interface to multiple switches. As described by Fig 1, switch A and C are connected by link A,
and switch B and C are connected by link B. In switch C, link A and B are formed an aggregation interface to
balance the traffic, in the meanwhile, switch A and B are formed a MLAG use link A and B. For the
communication between the members of the MLAG, for example, mac entries which learned by the MLAG
need be synchronized between the switch A and B, link C are used to connect the switch A and B as the
channel interface. The number of links which connect switch A and C or B and C can more than 1.
There are two issues in the MLAG: Mac entry synchronization and broadcast traffic control. Mac entry synchronization means the Mac entry which learned by the interface should be synchronized by the peer switch. In current version, we only support 2 nodes in a MLAG and use L2 traffic to communicate between the nodes.

(1) Configuring mLAG ID
The mlag-id command assigns an MLAG ID to an aggregation interface. mLAG neighbor switches form an mLAG when each switch configures the same mLAG-ID to a aggregation interface. Only one MLAG ID can be assigned to an aggregation interface. The same mLAG-ID cannot be assigned to more than one aggregation interface. The mLAG-ID configuration dependent mLAG mac and node-id.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag mlag-id 1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Configuring mLAG node-id
The node-id command assigns an MLAG to an aggregation interface, its user in LACP aggregation interface. The mLAG neighbor have different node id. It used to computer the interfaces number in LACP aggregation interface.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag node-id 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Configuring mLAG system mac
The mac command specifies the local chassis system mac address for a mLAG domain, its used in LACP aggregation interface as source system mac address.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag mac e8:9a:8f:50:3d:30
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(4) Configuring mLAG neighbor
The neighbor command specifies the neighbor mac address for a mLAG domain. mLAG hello-interval and mac synchronized messages will sent to the neighbor mac address.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag neighbour e8:9a:8f:50:3d:30 channel "ae24"
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(5) Configuring mLAG channel
Configures the selected aggregation interface or gigabitEthernet interface as the mLAG channel port. To form an mLAG, two switches are connected through an interface called a channel port. The channel port carries control and data traffic between the two switches.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag neighbour e8:9a:8f:50:3d:30 channel "ae24"
```
6) Configuring mLAG priority

The priority command assigns a mLAG domain. The priority use master/slave negotiation between the two neighbor switch.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 export send-network
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

7) Configuring mLAG hello-interval

The hello-interval command configures the hello messages in both directions between the mLAG neighbors. If the neighbor switch in four times the hello-interval does not receive the message, mLAG neighbor switches revert to their independent state.

```
XorPlus# set interface aggregate-ethernet ae22 aggregated-ether-options mlag hello-interval 60
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

**Configuring base mLAG example**

- As shown in Figure 6-3, mLAG runs between SwitchA and SwitchB; The mLAG connections between the neighbor switches and two Network Devices.

  - The mLAG switches connect through a LACP LAG to SwitchC.

  - The mLAG switches connect through a static LAG to ServerA.
(1) Configure the SwitchA

Configure static and LACP LAG.

XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options lACP enable true
[edit]
XorPlus# set interface aggregate-ethernet ae2
[edit]
XorPlus# set interface aggregate-ethernet ae3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set interface gigabit-ethernet ge-1/1/1 ether-options 802.3ad ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 ether-options 802.3ad ae2
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 ether-options 802.3ad ae3
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/50 ether-options 802.3ad ae3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the VLAN that each aggregation interface belongs to.

XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# set vlans vlan-id 15
[edit]
XorPlus# set vlans vlan-id 16
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 16
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching vlan members 16
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching vlan members 16
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure mLAG-id, mac and node-id to the aggregation interface.

XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag mlag-id 1
[edit]
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag mac e8:9a:8f:50:3d:30
[edit]
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag node-id 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag mlag-id 2
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag mac e8:9a:8f:50:3d:30
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag node-id 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure mLAG neighbor mac address and channel port .

XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag neighbour c8:0a:9:9e:14:ae channel "ae3"
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag neighbour c8:0a:9:9e:14:ae channel "ae3"
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

(2) **Configure the SwitchB**

- Configure static and LACP LAG.

```
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options lACP enable true
[edit]
XorPlus# set interface aggregate-ethernet ae2
[edit]
XorPlus# set interface aggregate-ethernet ae3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

- Configure the VLAN that each aggregation interface belongs to.

```
XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# set vlans vlan-id 15
[edit]
XorPlus# set vlans vlan-id 16
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

```
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 16
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae2 family ethernet-switching vlan members 16
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae3 family ethernet-switching vlan members 16
[edit]
```
Configure mLAG-id, mac and node-id to the aggregation interface.

```
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag mlag-id 1
[edit]
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag mac c8:0a:a9:9e:14:a4
[edit]
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag node-id 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

```
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag mlag-id 2
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag mac c8:0a:a9:9e:14:a4
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag node-id 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

Configure mLAG neighbor mac address and channel port.

```
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options mlag neighbour e8:9a:8f:50:3d:30 channel "ae3"
[edit]
XorPlus# set interface aggregate-ethernet ae2 aggregated-ether-options mlag neighbour e8:9a:8f:50:3d:30 channel "ae3"
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(3) Configure the SwitchC

Configure LACP LAG.

```
XorPlus# set interface aggregate-ethernet ae1 aggregated-ether-options lacp enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

```
XorPlus# set interface gigabit-ethernet ge-1/1/1 ether-options 802.3ad ae1
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 ether-options 802.3ad ae1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```
Configure the VLAN that each aggregation interface belongs to.

XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# set vlans vlan-id 15
[edit]
XorPlus# set vlans vlan-id 16
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 15
[edit]
XorPlus# set interface aggregate-ethernet ae1 family ethernet-switching vlan members 16
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(4) Configure the Server A
   Configure the Server NIC1 and NIC2 as static LAG

(5) View the mLAG internal and neighbor status of Switch A.

SwitchA# run show mlag internal
MLAG ID LOCAL_LAG FLOODING MAC_SYNCING STATE ROLE
----------------------------------------------------------------------------
2 ae2 false true FULL SLAVE
1 ae1 false true FULL SLAVE
SwitchA# run show mlag neighbour 1
NEIGHBOUR STATE LINK STATUS
----------------------------------------------------------------------------
c8:0:a9:9e:14:a4 full LINKUP
SwitchA# run show mlag neighbour 2
NEIGHBOUR STATE LINK STATUS
----------------------------------------------------------------------------
c8:0:a9:9e:14:a4 full LINKUP
XorPlus#

(6) View the mLAG internal and neighbor status of Switch B.

SwitchA# run show mlag internal
MLAG ID LOCAL_LAG FLOODING MAC_SYNCING STATE ROLE
----------------------------------------------------------------------------
2 ae2 false true FULL MASTER
1 ae1 false true FULL MASTER
SwitchA# run show mlag neighbour 1
NEIGHBOUR STATE LINK STATUS
----------------------------------------------------------------------------
e8:9a:8f:50:3d:30 full LINKUP
SwitchA# run show mlag neighbour 2
NEIGHBOUR STATE LINK STATUS
----------------------------------------------------------------------------
e8:9a:8f:50:3d:30 full LINKUP
XorPlus#

Ethernet Port Configuration
You can disable and enable the Ethernet port, as well as configure its MTU, rate-limit, and flow control.
(1) Shutting down the Ethernet port

```bash
XorPlus# set interface gigabit-ethernet ge-1/1/1 disable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(2) Configuring the MTU and rate-limit

```bash
XorPlus# set interface gigabit-ethernet ge-1/1/1 rate-limiting egress kilobits 10000
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 mtu 1200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(3) Enabling port flow control

```bash
XorPlus# set interface gigabit-ethernet ge-1/1/1 ether-options flow-control true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(4) Configuring port speed

```bash
XorPlus# set interface gigabit-ethernet ge-1/1/1 speed 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(5) Displaying port information

```bash
XorPlus# run show interface gigabit-ethernet ge-1/1/1 detail
Physical interface: ge-1/1/1, Enabled, Physical link is Up
Interface index: 1
Link-level type: Ethernet, MTU: 1514, Speed: 1Gb/s, Duplex: Full
Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
Interface rate limit: ingress:0, egress:0
Current address: c8:0a:a9:04:49:19, Hardware address: c8:0a:a9:04:49:19
Traffic statistics:
 Input Packets..........................35748
 Output Packets.........................35143881241
 Input Octets: 3923150
 Output Octets: 2266956387852
MAC statistics:
 Multicast packets RX and TX.........199565932
```
Storm Control in Ethernet Port Configuration

You can configure unicast, multicast, and broadcast storm control in packets per second.

1. Configuring storm control

XorPlus# set interface gigabit-ethernet ge-1/1/1 storm-control broadcast pps 10000
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 storm-control multicast pps 10000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Static MAC entries and Dynamic MAC Address Learning

You can configure a static MAC entry in the FDB, and managed dynamic MAC address learning (e.g. configuring aging time, deleting the dynamic MAC address entry).

1. Configuring a static MAC entry and managing the FDB

[edit]
XorPlus# set interface ethernet-switching-options mac-table-aging-time 60
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# run clear ethernet-switching table all
XorPlus# run show ethernet-switching table
Total entries in switching table: 2
Static entries in switching table: 0
Dynamic entries in switching table: 2

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC address</th>
<th>Type</th>
<th>Age</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:22:be:96:f2:83</td>
<td>Dynamic</td>
<td>60</td>
<td>ge-1/1/1</td>
</tr>
<tr>
<td>1</td>
<td>00:22:be:96:f2:84</td>
<td>Dynamic</td>
<td>60</td>
<td>ge-1/1/2</td>
</tr>
</tbody>
</table>

XorPlus#
Cut-through Mode Configuration

By default, the switch forwards the packets in cut-through switching mode. You can configure the switch to store-and-forward mode with the commands below.

(1) Configuring your switch to store-and-forward mode

```
XorPlus# set interface cut_through_mode false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configuring Mirroring

You can configure one (1) mirror to analyze traffic. Configure the source/destination port (also called the input/output port).

(1) Configuring a mirror to analyze traffic

```
XorPlus# set interface ethernet-switching-options analyzer 111 input egress ge-1/1/1
[edit]
XorPlus# set interface ethernet-switching-options analyzer 111 input ingress ge-1/1/1
[edit]
XorPlus# set interface ethernet-switching-options analyzer 111 input egress ge-1/1/2
[edit]
XorPlus# set interface ethernet-switching-options analyzer 111 input ingress ge-1/1/2
[edit]
XorPlus# set interface ethernet-switching-options analyzer 111 output ge-1/1/3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show analyzer 111
Analyzer name: 111
Output interface: <ge-1/1/3>
Ingress monitored interfaces: <ge-1/1/1><ge-1/1/2>
Egress monitored interfaces: <ge-1/1/1><ge-1/1/2>
XorPlus#
```

The output port does not belong to any VLAN, and will not participate in Layer2 or Layer3 forwarding.

802.1Q Basic Port Configuration

- IEEE 802.1Q, or VLAN tagging, is a networking standard that defines VLAN. You can configure a port as either a trunk or access port, and with the native VLAN ID. You can also add the port to more than one VLAN if the port is in trunk mode.

- Access ports belong to native VLANs, while trunk ports can belong to more than one VLAN (excluding the native VLAN.)

(1) Configuring the access/trunk mode
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring the native VLANID
The native VLANID is the ID of the default VLAN that the port belongs to. Every port should be included in at least one VLAN.

XorPlus# set vlans vlan-id 5
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 5
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# run show vlans vlan-id 5
VLAN ID: 5
VLAN Name: default
Description: vlan-interface:
Number of member ports: 1
Tagged port: None
Untagged port: ge-1/1/1,
XorPlus#

(3) Adding a port to a VLAN

XorPlus# set vlans vlan-id 5
[edit]
XorPlus# set vlans vlan-id 6
[edit]
XorPlus# set vlans vlan-id 7
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 5
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 6
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 7
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# run show vlans
VlanID  Tag        Interfaces
------  --------  -----------------------------------------------
  1      tagged   ge-1/1/2, ge-1/1/3, ge-1/1/4, ge-1/1/5, ge-1/1/6, ge-1/1/7, ge-1/1/8, ge-1/1/9, ge-1/1/10, ge-1/1/11, ge-1/1/12, ge-1/1/13, ge-1/1/14, ge-1/1/15, ge-1/1/16, ge-1/1/17, ge-1/1/18, ge-1/1/19, ge-1/1/20, ge-1/1/21, ge-1/1/22, ge-1/1/23, ge-1/1/24, ge-1/1/25, ge-1/1/26,
(4) Creating a VLAN within the VLAN range

You can create VLANs within the VLAN range, and then add ports to these VLANs.

```
XorPlus# set vlans vlan-id 2-4094
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 1-4094
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 1-4094
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 1-4094
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

**VLAN Configuration Example**

In the following topology, the VLANs are configured for each switch.

![VLAN Configuration Diagram](image)

(1) Configuring Switch A

For Switch A, you should configure ge-1/1/1~ge-1/1/4 as access ports, and te-1/1/49 as the trunk port, because the 10Gbit link will trunk the traffic of VLAN-2 and VLAN-3.
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 2
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done:
[edit]
XorPlus#
XorPlus# run show vlans
VlanID  Tag     Interfaces
------  -------- -----------------------------------------------
1 tagged
  untagged  ge-1/1/5, ge-1/1/6, ge-1/1/7, ge-1/1/8, ge-1/1/9,
  ge-1/1/10, ge-1/1/11, ge-1/1/12, ge-1/1/13, ge-1/1/14,
  ge-1/1/15, ge-1/1/16, ge-1/1/17, ge-1/1/18, ge-1/1/19,
  ge-1/1/20, ge-1/1/21, ge-1/1/22, ge-1/1/23, ge-1/1/24,
  ge-1/1/25, ge-1/1/26, ge-1/1/27, ge-1/1/28, ge-1/1/29,
  ge-1/1/30, ge-1/1/31, ge-1/1/32, ge-1/1/33, ge-1/1/34,
  ge-1/1/35, ge-1/1/36, ge-1/1/37, ge-1/1/38, ge-1/1/39,
  ge-1/1/40, ge-1/1/41, ge-1/1/42, ge-1/1/43, ge-1/1/44,
  ge-1/1/45, ge-1/1/46, ge-1/1/47, ge-1/1/48, te-1/1/49,
  te-1/1/50, te-1/1/51, te-1/1/52,
2 tagged
  te-1/1/49,
3 tagged
  untagged  ge-1/1/1, ge-1/1/2,
  untagged  ge-1/1/3, ge-1/1/4,
XorPlus#

(2) Configuring Switch B
ForSwitchB, configure ge-1/1/1~ge-1/1/4 as access ports and te-1/1/49 as the trunk port, because the
10Gbit link will trunk the traffic of VLAN-2 and VLAN-3.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode access
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode access
Q-in-Q Basic Port Configuration

- Q-in-Q tunneling allows service providers on Ethernet access networks to extend a Layer 2 Ethernet connection between two customer sites. You can also use Q-in-Q tunneling to segregate or bundle customer traffic into fewer VLANs, or different VLANs, by adding another layer of 802.1Q tags.

- Q-in-Q tunneling is useful when customers have overlapping VLAN IDs, because the customer’s 802.1Q VLAN tags are prepended by the service VLAN tag. The L2/L3 implementation of Q-in-Q tunneling supports the IEEE 802.1ad standard.

- The Q-in-Q tunneling external mode belongs to basic Q-in-Q, while the Q-in-Q tunneling internal mode belongs to selective Q-in-Q.

1) Configuring the Q-in-Q tunneling internal/external mode

   By default, Q-in-Q is disabled. You can enable it as shown below:

   ```
 XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling internal [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling mode external
   ```
(2) Configuring Q-in-Q tunneling to mapping ingress customer VLANs to service VLANs

Selective Q-in-Q tunneling allows you to add different customer VLAN tags, based on different service VLAN tags.

```
[edit]
XorPlus# set vlans vlan-id 100
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlans vlan-id 200
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling-mode internal
XorPlus# set vlans dot1q-tunneling ingress t1 from untag enabled true
XorPlus# set vlans dot1q-tunneling ingress t1 then customer-vlan 10
XorPlus# set vlans dot1q-tunneling ingress t1 then service-vlan 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling
XorPlus# commit

XorPlus# set vlans dot1q-tunneling ingress t2 from one-tag customer-vlan-list 20
XorPlus# set vlans dot1q-tunneling ingress t2 then service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling
XorPlus# commit

XorPlus# set vlans dot1q-tunneling ingress t3 from one-tag customer-vlan-list 30
XorPlus# set vlans dot1q-tunneling ingress t3 then service-vlan 300
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus# run show interface gigabit-ethernet ge-1/1/1 dot1q-tunneling
Dot1q Tunneling Mode: none, Ether Type: 0x8100
Ingress: t1
 Untagged-type Enabled: true
 One-tagged-type Customer Vlan: 10
 New Service Vlan: 100
 New Customer Vlan: 10
```

```
Ingress: t2
 Untagged-type Enabled: false
 One-tagged-type Customer Vlan: 20
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 200
 New Customer Vlan: 0
Ingress: t3
 Untagged-type Enabled: false
 One-tagged-type Customer Vlan: 30
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 300
 New Customer Vlan: 0

XorPlus#

(3) Configuring Q-in-Q tunneling egress pop service VLANs

Selective Q-in-Q tunneling allows you to delete different customer VLAN tags, based on different service VLAN tags.

XorPlus# set vlans vlan-id 100
XorPlus# set vlans vlan-id 200
XorPlus# set vlans vlan-id 300
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 100
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t1 from customer-vlan 10
XorPlus# set vlans dot1q-tunneling egress t1 from service-vlan 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling egress t1
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t2 from customer-vlan 20
XorPlus# set vlans dot1q-tunneling egress t2 from service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling egress t2
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t3 from customer-vlan 30
XorPlus# set vlans dot1q-tunneling egress t3 from service-vlan 300
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling egress t3
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
Q-in-Q Configuration Example
The configuration of Q-in-Q is shown in Fig. 4-2.

(1) Configuration on Provider A
- Configure VLAN 100 as the default VLAN of GigabitEthernet ge-1/1/1, and enable the Q-in-Q tunneling internal mode on GigabitEthernet ge-1/1/1.

- Configure the untagged frames received by the port with the customer VLAN tag 30 and service VLAN Tag 100.

- Configure the customer VLAN tag 10 frames received by the port with the service VLAN Tag 100.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 100
Configure VLAN 200 as the default VLAN of GigabitEthernet ge-1/1/2, and enable the Q-in-Q tunneling internal mode on GigabitEthernet ge-1/1/2.

Configure the untagged frames received by the port with the customer VLAN tag30 and service VLAN Tag 200.

Configure the customer VLAN tag20 frames received by the port with the service VLAN Tag 200.
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 200
[edit]
XorPlus# set vlans dot1q-tunneling ingress t5 from untag enabled true
XorPlus# set vlans dot1q-tunneling ingress t5 then customer-vlan 30
XorPlus# set vlans dot1q-tunneling ingress t5 then service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling
ingress t5
XorPlus# commit
XorPlus# set vlans dot1q-tunneling ingress t6 from one-tag customer-vlan-list 20
XorPlus# set vlans dot1q-tunneling ingress t6 then service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling
ingress t6
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t7 from customer-vlan 20
XorPlus# set vlans dot1q-tunneling egress t7 from service-vlan 200
XorPlus# set vlans dot1q-tunneling egress t7 then action one
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling
egress t7
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t8 from customer-vlan 30
XorPlus# set vlans dot1q-tunneling egress t8 from service-vlan 200
XorPlus# set vlans dot1q-tunneling egress t8 then action none
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling
egress t8
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling mode internal
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show interface gigabit-ethernet ge-1/1/2 dot1q-tunneling
Dot1q Tunneling Mode: internal, Ether Type: 0x8100
Ingress: t5
 Untagged-type Enabled: true
 One-tagged-type Customer Vlan: 30
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 200
 New Customer Vlan: 30
Ingress: t6
 Untagged-type Enabled: false
 One-tagged-type Customer Vlan: 20
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 200
 New Customer Vlan: 0
Egress: t7
 Service Vlan: 200
 Customer Vlan: 20
 Action: Retain the customer vlan tag
Egress: t8
 Service Vlan: 200
 Customer Vlan: 30
 Action: Strip both tags
XorPlus#
Configure VLAN 100/200 as the trunk port of GigabitEthernet te-1/1/49, and enable the Q-in-Q tunneling internal mode.

XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching port-mode trunk [edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 100 [edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 200 [edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching dot1q-tunneling mode internal [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show interface gigabit-ethernet te-1/1/49 dot1q-tunneling
Dot1q Tunneling Mode: internal, Ether Type: 0x8100
XorPlus#

(2) Configuration on Provider B
- Configure VLAN 100 as the default VLAN of GigabitEthernet ge-1/1/1, and enable the Q-in-Q tunneling internal mode on GigabitEthernet ge-1/1/1.

- Configure the untagged frames received by the port with the customer VLAN tag30 and service VLAN Tag 100.

- Configure the customer VLAN tag 10 frames received by the port with the service VLAN Tag 100.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 100
[edit]
[edit]
XorPlus# set vlans dot1q-tunneling ingress t1 from untag enabled true
XorPlus# set vlans dot1q-tunneling ingress t1 then customer-vlan 30
XorPlus# set vlans dot1q-tunneling ingress t1 then service-vlan 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling ingress t1
XorPlus# commit

XorPlus# set vlans dot1q-tunneling ingress t2 from one-tag customer-vlan-list 10
XorPlus# set vlans dot1q-tunneling ingress t2 then service-vlan 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling ingress t2
XorPlus# commit

XorPlus# set vlans dot1q-tunneling egress t3 from customer-vlan 10
XorPlus# set vlans dot1q-tunneling egress t3 from service-vlan 100
XorPlus# set vlans dot1q-tunneling egress t3 then action one
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling egress t3
XorPlus# commit

XorPlus# set vlans dot1q-tunneling egress t4 from customer-vlan 30
XorPlus# set vlans dot1q-tunneling egress t4 from service-vlan 100
XorPlus# set vlans dot1q-tunneling egress t4 then action none
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling egress t4
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching dot1q-tunneling mode internal

XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done:
[edit]
XorPlus# run show interface gigabit-ethernet ge-1/1/1 dot1q-tunneling
Dot1q Tunneling Mode: internal, Ether Type: 0x8100
 Ingress: t1
 Untagged-type Enabled: true
 One-tagged-type Customer Vlan:
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 100
 New Customer Vlan: 30
 Ingress: t2
 Untagged-type Enabled: false
 One-tagged-type Customer Vlan: 10
 Double-tagged-type Service Vlan: 0
 New Service Vlan: 100
 New Customer Vlan: 0
 Egress: t3
 Service Vlan: 100
 Action: Retain the customer vlan tag
 Egress: t4
 Service Vlan: 100
 Customer Vlan: 30
 Action: Strip both tags
XorPlus#

● Configure VLAN 200 as the default VLAN of Gigabit Ethernet ge-1/1/2, and enable the Q-in-Q tunneling internal mode on Gigabit Ethernet 1/1/2.

● Configure the untagged frames received by the port with the customer VLAN tag 30 and service VLAN Tag 200.

● Configure the customer VLAN tag 20 frames received by the port with the service VLAN Tag 200.

XorPlus# set vlans vlan-id 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done:
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 200
[edit]
XorPlus# set vlans dot1q-tunneling ingress t5 from untag enabled true
XorPlus# set vlans dot1q-tunneling ingress t5 then customer-vlan 30
XorPlus# set vlans dot1q-tunneling ingress t5 then service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling ingress t5
XorPlus# commit
XorPlus# set vlans dot1q-tunneling ingress t6 from one-tag customer-vlan-list 20
XorPlus# set vlans dot1q-tunneling ingress t6 then service-vlan 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling ingress t6
XorPlus# commit
XorPlus# set vlans dot1q-tunneling egress t7 from customer-vlan 20
XorPlus# set vlans dot1q-tunneling egress t7 from service-vlan 200
XorPlus# set vlans dot1q-tunneling egress t7 then action one
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling egress t7
XorPlus# commit

XorPlus# set vlans dot1q-tunneling egress t8 from customer-vlan 30
XorPlus# set vlans dot1q-tunneling egress t8 from service-vlan 200
XorPlus# set vlans dot1q-tunneling egress t8 then action none
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling egress t8
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching dot1q-tunneling mode internal
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show interface gigabit-ethernet ge-1/1/2 dot1q-tunneling

Dot1q Tunneling Mode: internal, Ether Type: 0x8100

<table>
<thead>
<tr>
<th>Ingress: t5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged-type Enabled: true</td>
</tr>
<tr>
<td>One-tagged-type Customer Vlan:</td>
</tr>
<tr>
<td>Double-tagged-type Service Vlan: 0</td>
</tr>
<tr>
<td>New Service Vlan: 200</td>
</tr>
<tr>
<td>New Customer Vlan: 30</td>
</tr>
<tr>
<td>Ingress: t6</td>
</tr>
<tr>
<td>Untagged-type Enabled: false</td>
</tr>
<tr>
<td>One-tagged-type Customer Vlan: 20</td>
</tr>
<tr>
<td>Double-tagged-type Service Vlan: 0</td>
</tr>
<tr>
<td>New Service Vlan: 200</td>
</tr>
<tr>
<td>New Customer Vlan: 0</td>
</tr>
<tr>
<td>Egress: t7</td>
</tr>
<tr>
<td>Service Vlan: 200</td>
</tr>
<tr>
<td>Customer Vlan: 20</td>
</tr>
<tr>
<td>Action: Retain the customer vlan tag</td>
</tr>
<tr>
<td>Egress: t8</td>
</tr>
<tr>
<td>Service Vlan: 200</td>
</tr>
<tr>
<td>Customer Vlan: 30</td>
</tr>
<tr>
<td>Action: Strip both tags</td>
</tr>
</tbody>
</table>

XorPlus#

Configure VLAN 100/200 as the trunk port of Gigabit Ethernet te-1/1/49, and enable the Q-in-Q tunneling internal mode.

XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching dot1q-tunneling mode internal
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show interface gigabit-ethernet te-1/1/49 dot1q-tunneling

Dot1q Tunneling Mode: internal, Ether Type: 0x8100
XorPlus#
MSTP Configuration

802.1D, 802.1w, and 802.1s are spanning tree protocols that can avoid the loop in Layer2. You can configure the parameters of MSTP, including bridge-priority, forward-delay, max-age, and hello-time interval.

1) **Enabling spanning tree mode in MSTP**

   ```
   XorPlus# set protocols spanning-tree force-version 3
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus# 
   ```

2) **Configuring basic global parameters of MSTP**

 When configuring global parameters, make sure to set the forward delay as greater than MaxAge/2 + 1, or the commit will fail.

   ```
   XorPlus# set protocols spanning-tree mstp bridge-priority 4096
   [edit]
   XorPlus# set protocols spanning-tree mstp forward-delay 20
   [edit]
   XorPlus# set protocols spanning-tree mstp hello-time 2
   [edit]
   XorPlus# set protocols spanning-tree mstp max-age 20
   [edit]
   XorPlus# set protocols spanning-tree mstp max-hops 8
   [edit]
   XorPlus# set protocols spanning-tree mstp configuration-name test1
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus# run show spanning-tree mstp bridge
   Bridge Spanning Tree Parameters
   Enabled Protocol: MSTP
   Root ID: 4096.08:9e:01:39:1a:fe
   External Root Path Cost: 0
   CIST Regional Root ID: 4096.08:9e:01:39:1a:fe
   Root Port:
   CIST Internal Root Path Cost: 0
   Hello Time: 2
   Maximum Age: 20
   Forward Delay: 20
   Remaining Hops: 8
   Bridge Configuration Name: test1
   Bridge Configuration Digest: ac36177f50283cd4b83821d8ab26de62
   Number of Topology Changes: 13
   Time Since Last Topology Change: 0 days 00:00:31
   Local Parameters
   Bridge ID: 4096.08:9e:01:39:1a:fe
   Hello Time: 2
   Maximum Age: 20
   Forward Delay: 20
   Remaining Hops: 8
   XorPlus# set vlans vlan-id 100
   [edit]
   XorPlus# set vlans vlan-id 200
   [edit]
   XorPlus# set vlans vlan-id 300
   ```
(3) Configuring MSTP interface parameters

XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 external-path-cost 30000
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 internal-path-cost 10000
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 edge true
(4) Configuring the BPDU Filter
The BPDU filter prevents the bridge from using BPDUs for STP calculations. The switch will then ignore any BPDUs that it receives.

```
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 mode point-to-point
[edit]
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 port-priority 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(5) Configuring BPDU root guard
If a switch port receives a higher bridge-priority BPDU, it will ignore the BPDU and keep the current root-bridge as the root-bridge.

```
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 bpdu-filter true
[edit]
```

(6) Configuring BPDU TCN-guard
When a port is configured with TCN-guard, the port does not process and propagate any topological change-related information received on the configured port.

```
XorPlus# set protocols spanning-tree mstp interface ge-1/1/1 tcn-guard true
[edit]
```

(7) Disabling/enabling MSTP
If you disable MSTP, the port will stay in forwarding status and cease to send BPDUs.

```
XorPlus# set protocols spanning-tree enable false
```
Layer2 Switching Configuration

PVST Configuration

802.1D, 802.1w, and 802.1s are spanning tree protocols that can avoid the loop in Layer2. You can configure the parameters of PVST, including bridge-priority, forward-delay, max-age, and hello-time interval.

(1) Enabling spanning tree mode in PVST

```
XorPlus# set protocols spanning-tree force-version 4
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(2) Configuring basic VLAN parameters of PVST

When configuring basic VLAN parameters, set the forward delay as greater than Max Age/2 + 1, or the commit will fail.

```
XorPlus# set protocols spanning-tree pvst vlan 2 bridge-priority 4096
XorPlus# set protocols spanning-tree pvst vlan 2 forward-delay 20
XorPlus# set protocols spanning-tree pvst vlan 2 hello-time 4
```
Layer2 Switching Configuration

XorPlus# set protocols spanning-tree pvst vlan 2 max-age 30
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# run show spanning-tree pvst bridge vlan 2
PVST Bridge Parameters for VLAN 2
 Root Bridge: 4098.08:9e:01:61:65:71
 Root Cost: 0
 Root Port:
 Hello Time: 4
 Max Age: 30
 Forward Delay: 20
 Time Since Last Topology Change: 0 days 00:02:55
Local Parameters
 Bridge ID: 4098.08:9e:01:61:65:71
 Hello Time: 4
 Maximum Age: 30
 Forward Delay: 20

(3) Configuring PVST interface parameters
XorPlus# set protocols spanning-tree pvst vlan 2 interface ge-1/1/1 path-cost 555555
[edit]
XorPlus# set protocols spanning-tree pvst vlan 2 interface ge-1/1/1 port-priority 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show spanning-tree pvst interface vlan 2
Rapid PVST+ Spanning Tree Interface Status for VLAN 2
<table>
<thead>
<tr>
<th>Interface</th>
<th>Port ID</th>
<th>Designated Port ID</th>
<th>Designated Bridge Port ID</th>
<th>Port Cost</th>
<th>State</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/1/1</td>
<td>192.1</td>
<td>192.1</td>
<td>4098.08:9e:01:61:65:71</td>
<td>555555</td>
<td>FORWARDING</td>
<td>EDGE</td>
</tr>
</tbody>
</table>

(4) Configuring the interface mode
You can configure the interface mode as point-to-point or shared.

XorPlus# set protocols spanning-tree pvst interface ge-1/1/1 mode point-to-point
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree pvst interface ge-1/1/1 mode shared
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(5) Disabling/enabling PVST on one VLAN
You can disable or enable the spanning tree protocol PVST on a single designated VLAN.

XorPlus# set protocols spanning-tree pvst vlan 2 enable false
(6) Disabling/enabling PVST

You cannot disable the spanning tree protocol PVST with just the `enable false` command. To disable PVST, first configure the spanning tree mode in MSTP/RSTP/STP, then disable the spanning tree. After the spanning tree is disabled, the port will stay in “forwarding” status and cease to send BPDUs.

```
XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree force-version 2
[edit]
XorPlus# commit
Waiting for merging configuration.
```

```
XorPlus# set protocols spanning-tree enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit Failed
102 Command failed Cannot disable spanning tree under PVST mode[edit]
```

```
XorPlus# exit discard
XorPlus> configure
Entering configuration mode.
There are no other users in configuration mode.
[edit]
XorPlus# set protocols spanning-tree force-version 2
[edit]
XorPlus# commit
Waiting for merging configuration.
```

Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree enable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

XorPlus# set protocols spanning-tree force-version 4
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# run show spanning-tree
Bridge Spanning Tree Parameters
 Enabled Protocol: PVST
 Root ID: 32769.08:9e:01:61:65:71
 Root Path Cost: 0
 Designated Bridge ID: 32769.08:9e:01:61:65:71
 Root Port:
 Hello Time: 2
 Maximum Age: 20
 Forward Delay: 15
 Number of Topology Changes: 1
 Time Since Last Topology Change: 0 days 00:00:09
Local Parameters
 Bridge ID: 32769.08:9e:01:61:65:71
 Hello Time: 2
 Maximum Age: 20
 Forward Delay: 15

MSTP Configuration Example

- We provide two examples of MSTP configuration. In our first example, VLAN 100 is mapped to MSTI-1, and VLAN 200 is mapped to MSTI-2. The entire topology belongs to only one MSTP domain, named `region1`. Switch A is the root of the network.

- In order to achieve load balancing, VLAN 100 should be in MSTI-1 (Fig. 4-4), and VLAN 200 should be in MSTI-2 (Fig. 4-5).
Figure 4-3. MSTP configuration.

Figure 4-4. MSTI-1 topology for VLAN100.
(1) Configuring Switch A

For Switch A, configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100 and VLAN 200.

```
XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 vlan 100
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 vlan 200
[edit]
XorPlus# set protocols spanning-tree mstp configuration-name region1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```
To make sure that Switch A is the root of the network and the regional root of MSTI-1, configure it as the higher priority.

```
XorPlus# set protocols spanning-tree mstp bridge-priority 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 bridge-priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Configuring Switch B

Configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100 and VLAN 200.

```
XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 vlan 100
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 vlan 200
[edit]
XorPlus# set protocols spanning-tree mstp configuration-name region1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```
To make sure that Switch B is the regional root of MSTI-2, and that ge-1/1/2 and ge-1/1/3 are in blocking status in MSTI-1, you should configure a higher MSTI-2 priority, and a large value for internal-path-cost in MSTI-1.

```
XorPlus# set protocols spanning-tree mstp msti 2 bridge-priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 interface ge-1/1/2 cost 10000000
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 interface ge-1/1/3 cost 10000000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Configuring Switch C
Configure ge-1/1/1~ge-1/1/2 as trunk ports, and as members of VLAN 100 and VLAN 200.

```
XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

- To set ge-1/1/1 and ge-1/1/2 in forwarding status in MSTI-1, configure a lower value for internal-path-cost.
To set ge-1/1/1 in blocking status in MSTI-2, configure a higher value for internal-path-cost.

```
XorPlus# set protocols spanning-tree mstp msti 1 interface ge-1/1/1 cost 1000
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 interface ge-1/1/2 cost 1000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 interface ge-1/1/1 cost 100000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(4) Configuring Switch D

Configure ge-1/1/1~ge-1/1/2 as trunk ports, and as members of VLAN 100 and VLAN 200.

```
XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

To set ge-1/1/1 in blocking status in MSTI-2 and ge-1/1/2 in blocking status in MSTI-1, configure a large value for internal-path-cost.

```
XorPlus# set protocols spanning-tree mstp msti 2 interface ge-1/1/1 cost 10000000
[edit]
```

To set ge-1/1/2 in blocking status in MSTI-1, configure a large value for internal-path-cost.

```
XorPlus# set protocols spanning-tree mstp msti 2 interface ge-1/1/2 cost 10000000
[edit]
```

```
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 interface ge-1/1/2 cost 10000000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

XorPlus# set protocols spanning-tree mstp msti 1 vlan 100
XorPlus# set protocols spanning-tree mstp msti 2 vlan 200

(5) Configuring Switch E
Configure ge-1/1/1~ge-1/1/2 as trunk ports, and as members of VLAN 100 and VLAN 200.

XorPlus# set vlans vlan-id 100
XorPlus# set vlans vlan-id 200

● To set ge-1/1/1 and ge-1/1/2 in forwarding status in MSTI-2, configure a lower value for internal-path-cost.

● To set ge-1/1/2 in blocking status in MSTI-1, configure a large value for internal-path-cost.

XorPlus# set protocols spanning-tree mstp msti 2 interface ge-1/1/1 cost 1000
XorPlus# set protocols spanning-tree mstp msti 2 interface ge-1/1/2 cost 1000

XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
● In our second example, there are two regions. In region 1, VLAN 100 is mapped to MSTI-1, VLAN 200 is mapped to MSTI-2, and VLAN 300 is mapped to MSTI-3. In region 2, VLAN 200 is mapped to MSTI-2, and VLAN 400 is mapped to MSTI-4. Switch A is the root of the entire network.

● The topologies of the VLANs are presented in Fig. 4-6 through 4-10.

Figure 4-6. MSTP configuration.
Figure 4-7. Topology for VLAN 100.

Figure 4-8. Topology for VLAN 200.
(1) Configuring Switch A
For SwitchA, configure ge-1/1/1~ge-1/1/2 as trunk ports, and as members of VLAN 100, VLAN 200, VLAN 300, and VLAN 400.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
To make sure that Switch A is the root of the network and the regional root of MSTI-1, configure it as the higher priority.

XorPlus# set protocols spanning-tree mstp bridge-priority 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring Switch B
Configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100, VLAN 200, VLAN 300, and VLAN 400.

```
XorPlus# set vlans vlan-id 100 [edit]
XorPlus# set vlans vlan-id 200 [edit]
XorPlus# set vlans vlan-id 300 [edit]
XorPlus# set vlans vlan-id 400 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 300 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 400 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 300 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 400 [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```
(3) Configuring Switch C
Configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100, VLAN 200, VLAN 300, and VLAN 400.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set vlans vlan-id 300
[edit]
XorPlus# set vlans vlan-id 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 400
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 1 vlan 100
[edit]
To make sure that Switch C is the regional root of MSTI-3, ge-1/1/1 is in blocking status in MSTI-2, and that ge-1/1/2 is in blocking status in MSTI-1, you should configure a higher MSTI-3 priority, and large values for internal-path-costs of ge-1/1/1 in MSTI-2 and ge-1/1/2 in MSTI-1.

XorPlus# set protocols spanning-tree mstp msti 3 bridge-priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus#

(4) Configuring Switch D
Configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100, VLAN 200, VLAN 300, and VLAN 400.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set vlans vlan-id 300
[edit]
XorPlus# set vlans vlan-id 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 400
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 vlan 200
[edit]
XorPlus# set protocols spanning-tree mstp msti 4 vlan 400
[edit]
XorPlus# set protocols spanning-tree mstp configuration-name region2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp bridge-priority 16384
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 bridge-priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

To make sure that Switch D is the regional root of MSTI-2 and the root of CIST, configure a higher MSTI-2 priority and bridge priority.

XorPlus# set protocols spanning-tree mstp bridge-priority 16384
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree mstp msti 2 bridge-priority 4096
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(5) Configuring Switch E

Configure ge-1/1/1~ge-1/1/3 as trunk ports, and as members of VLAN 100, VLAN 200, VLAN 300, and VLAN 400.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set vlans vlan-id 300
[edit]
XorPlus# set vlans vlan-id 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
PVST Configuration Example

In the following topology, we provide an example of PVST configuration. Switches A and B are in the aggregation layer, and switches C and D are in the access layer. Configure switch A as the root bridge of VLAN 100 and VLAN 200, switch B as the root bridge of VLAN 300, and switch C as the root bridge of VLAN 400.

To make sure that Switch E is the regional root of MSTI-4, configure a higher MSTI-4 priority.

```
xorplus# set protocols spanning-tree mstp msti 4 bridge-priority 4096
```

```
xorplus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

© 2013 Pica8 Inc. All Rights Reserved.

Layer2 Switching Configuration

© 2013 Pica8 Inc. All Rights Reserved.
Figure 4-11. PVST configuration.

1) Configuring Switch A
For Switch A, configure ge-1/1/1~ge-1/1/3 as trunk ports, and ge-1/1/1 as a member of VLANs 100, 200, 300, and 400; ge-1/1/2 as a member of VLANs 200 and 300; and ge-1/1/3 as a member of VLANs 100 and 200.

XorPlus# set vlans vlan-id 100
XorPlus# set vlans vlan-id 200
XorPlus# set vlans vlan-id 300
XorPlus# set vlans vlan-id 400
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 300
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
To make sure that Switch A is the root bridge of VLANs 100 and 200, configure VLANs 100 and 200 as the higher priority.

```
XorPlus# set protocols spanning-tree pvst vlan 100 bridge-priority 0
[edit]
XorPlus# set protocols spanning-tree pvst vlan 200 bridge-priority 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Configuring Switch B

Configure ge-1/1/1~ge-1/1/3 as trunk ports, and ge-1/1/1 as a member of VLANs 100, 200, 300, and 400; ge-1/1/2 as a member of VLANs 100 and 200; and ge-1/1/3 as a member of VLANs 200 and 300.

```
XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set vlans vlan-id 300
[edit]
XorPlus# set vlans vlan-id 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 300
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 300
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```
To make sure that Switch B is the root bridge of VLAN 300, configure VLAN 300 as the higher priority.

XorPlus# set protocols spanning-tree pvst vlan 300 bridge-priority 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Configuring Switch C

Configure ge-1/1/1~ge-1/1/3 as trunk ports, and ge-1/1/1 as a member of VLANs 200 and 400, ge-1/1/2 as a member of VLANs 100 and 200, and ge-1/1/3 as a member of VLANs 100 and 200.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# set vlans vlan-id 200
[edit]
XorPlus# set vlans vlan-id 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

To make sure that Switch C is the root bridge of VLAN 400, configure VLAN 400 as the higher priority.

XorPlus# set protocols spanning-tree pvst vlan 400 bridge-priority 0
[edit]
(4) Configuring Switch D

Configure ge-1/1/1~ge-1/1/3 as trunk ports, and ge-1/1/1 as a member of VLANs 200 and 400, ge-1/1/2 as a member of VLANs 200 and 300, and ge-1/1/3 as a member of VLANs 200 and 300.

XorPlus# set vlans vlan-id 200
XorPlus# set vlans vlan-id 300
XorPlus# set vlans vlan-id 400
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching vlan members 400
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching vlan members 300
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching port-mode trunk
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 200
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching vlan members 300
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols spanning-tree force-version 4
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

**Buffer Management Configuration**

- The switch provides the buffer for burst traffic to avoid dropping packets. You can configure “cell” and “packet” to control buffer management.

- In general, you do not need to configure parameters for “cell” and “packet,” because the switch contains their default parameters.

- You can configure the switch to be in burstmode for burst traffic, which will dynamically allocate the “cell” and “packet” for each port and queue.

(1) Configuring burstmode for a specified port
XorPlus# set interface ethernet-switching-options bufferburst-mode enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring “cell” and “packet” for a specified port

XorPlus# set interface ethernet-switching-options buffer cell queue 1 guaranteed-ratio 10
[edit]
XorPlus# set interface ethernet-switching-options buffer cell queue 1 shared-ratio 30
[edit]
XorPlus# set interface ethernet-switching-options buffer cell shared-ratio 50
[edit]
XorPlus# set interface ethernet-switching-options buffer cell total-shared-ratio 80
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

BPDU Tunneling Configuration

As a Layer2 tunneling technology, BPDU tunneling enables Layer 2 protocol packets from geographically dispersed customer networks to be transparently transmitted over specific tunnels across a service provider network.

(1) Configuring BPDU tunneling for STP on an interface

XorPlus# set interface gigabit-ethernet ge-1/1/37 family ethernet-switching bpdu-tunneling
protocol stp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring destination multicast MAC address for BPDU packets

XorPlus# set interface bpdu-tunneling destination-mac 01:0E:00:00:00:01
[edit]
XorPlus# commit
Waiting for merging configuration.
BPDU Tunneling Configuration Example

In the following topology, we provide an example of configuring BPDU tunneling.

![BPDU Tunneling Configuration Diagram](image)

Figure 4-12. BPDU Tunneling Configuration.

1. **Configuration on Provider A**
   Configure VLAN 100 as the default VLAN of GigabitEthernet ge-1/1/1, and enable BPDU tunneling on GigabitEthernet ge-1/1/1.

   ```
 XorPlus# set vlans vlan-id 100
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 100
 [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching bpdu-tunneling protocol stp
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus# commit
   ```

   Configure VLAN 200 as the default VLAN of GigabitEthernet ge-1/1/2, and enable BPDU tunneling on GigabitEthernet ge-1/1/2.

   ```
 XorPlus# set vlans vlan-id 200
 [edit]
 XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching bpdu-tunneling protocol stp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure VLAN 200 as the default VLAN of GigabitEthernet te-1/1/49.

XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the destination multicast MAC address for BPDUs as 01:0E:00:00:00:01.

XorPlus# set interface bpdu-tunneling destination-mac 01:0E:00:00:00:01
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuration on Provider B

Configure VLAN 100 as the default VLAN of GigabitEthernet ge-1/1/1, and enable BPDUtunneling on GigabitEthernet ge-1/1/1.

XorPlus# set vlans vlan-id 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 100
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching bpdu-tunneling protocol stp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
Configure VLAN 200 as the default VLAN of GigabitEthernet ge-1/1/2, and enable BPDUtunneling on GigabitEthernet ge-1/1/2.

XorPlus# set vlans vlan-id 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching bpdu-tunneling protocol stp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

Configure VLAN 200 as the default VLAN of GigabitEthernet te-1/1/49.

XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching vlan members 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

Configure the destination multicast MAC address for BPDUs as 01:0E:00:00:00:01.

XorPlus# set interface bpdu-tunneling destination-mac 01:0E:00:00:00:01
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

XorPlus# set interface bpdu-tunneling destination-mac 01:0E:00:00:00:01
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 backup-port interface ae1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 backup-port delay 10
[edit]
XorPlus# commit

Configuring Flex Links

1. **Configuring a Flex Links interface and active interface preemption delay**

 You can configure two physical ports or two LAGs as Flex Links, or one physical port and one LAG as Flex Links.

 XorPlus# set interface gigabit-ethernet ge-1/1/1 backup-port interface ae1
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/1 backup-port delay 10
 [edit]
 XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface aggregate-ethernet ae2 backup-port interface ae3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

(2) Configuring the preemption mode
By default, the preemption mode is “forced,” and the active interface is preferred. Beyond that, you can configure the “bandwidth” or “off” mode. The “bandwidth” mode calls for a higher bandwidth interface, and the “off” mode turns off preemption.

XorPlus# set interface gigabit-ethernet ge-1/1/1 backup-port mode bandwidth
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Showing Flex Links on all interfaces
You can check the state of your Flex Links interfaces:

XorPlus# run show interface flexlink
Active Interface Backup Interface Mode Delay(seconds)
----------------- ----------------- -------- ---------------
ge-1/1/1(up) ge-1/1/2(standby) bandwidth 10
XorPlus#

UDLD Protocol Configuration

- UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD can detect unidirectional links due to misconnected interfaces. In aggressive mode, UDLD can also detect unidirectional links due to one-way traffic and twisted-pair links and to misconnected interfaces.

- You can enable UDLD globally or on specific ports.

(3) Configuring UDLD mode

XorPlus# set protocols udld aggressive true
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols udld interface ge-1/1/1 aggressive true
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
(4) Enable UDLD globally or on specific port

```
XorPlus# set protocols udld disable false
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus# set protocols udld interface ge-1/1/1 disable false
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
```

(5) Configuring UDLD message-interval

```
XorPlus# set protocols udld message-interval 20
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
```

(6) Display UDLD information

```
XorPlus# run show udld
Interface ge-1/1/1
------------------
Udld enabled, aggressive mode
Current bidirectional state: undetermined
Current phase: linkdown
Message interval: 7s
Timeout interval: 5s

Interface ge-1/1/2
------------------
Udld enabled, aggressive mode
Current bidirectional state: undetermined
Current phase: linkdown
Message interval: 7s
Timeout interval: 5s

Interface ge-1/1/3
------------------
Udld enabled, aggressive mode
Current bidirectional state: undetermined
Current phase: linkdown
Message interval: 7s
Timeout interval: 5s
```

Configuring IPv6 RA Guard

(1) Configuring the IPv6 RA guard policy

You can configure the RA guard policy with these steps: hop-limit, managed-config-flag, other-config-flag, prefix, source-ipv6-addr, and source-mac-addr.

```
XorPlus# set protocols neighbour ra-guard 1 hop-limit 1
[edit]
XorPlus# set protocols neighbour ra-guard 1 managed-config-flag false
```

© 2013 Pica8 Inc. All Rights Reserved.

L2/L3 Configuration Guide

Page 94
Configuring “trusted-port”

You can apply the RA guard to physical interfaces, LAGs, or VLANs; no more than one RA guard can be applied to one interface. The RAs will be forwarded only if all conditions are matched, but if “trusted-port” has been configured for the RA guard, then RAs will be forwarded on the trusted port regardless.

```
xorplus# set protocols neighbour ra-guard term 1 interface ge-1/1/1
[edit]
xorplus# set protocols neighbour ra-guard term 1 interface ae1
[edit]
xorplus# set protocols neighbour ra-guard term 1 vlan-id 2
[edit]
xorplus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
xorplus# set protocols neighbour ra-guard trusted-port ge-1/1/1
[edit]
xorplus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
xorplus# set protocols neighbour ra-guard term 2 vlan-id 3
[edit]
xorplus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
xorplus#
```

When the switch receives an ingress RA message, it will attempt to match the message via the RA guard. If the ingress port has the RA guard applied but is not a trusted port, the applied VLAN ID will be matched first. If the RA tag is matched with the VLAN ID, the RA guard will continue matching conditions to determine whether to forward or drop the RA message. If the RA tag is not matched with the VLAN ID, the applied interface will be matched (followed by the subsequent conditions).

Displaying RA guards

```
xorplus# run show ra-guard
Raguard: 1
```
cur hop limit : 1..10
managed configuration : Unset
other configuration : Set
source mac address :
source ipv6 address :
fe80::/64
prefix :
2001:11:11::/64
interface : ge-1/1/1, ae1
vlan : 2
packet dropped: 0
packet total : 0

Raguard: 2
vlan : 3
packet dropped: 0
packet total : 0

trusted port:
ge-1/1/1
XorPlus:

Chapter 5. Layer3 Routing Configuration

This chapter describes the configuration steps of Layer3 routing, including static routing, RIPv2, OSPFv2, VRRP, and ECMP.

Layer3 VLAN Interface Configuration

- The Layer3 interface is a VLAN interface. You should create a VLAN and a VLAN interface before configuring the Layer 3 interface.

- You can configure the IP address and prefix length for the VLAN interface.

- When all the member ports in the VLAN are link-down, the VLAN interface will be link-down. The VLAN interface will be link-up when at least one of the member ports are link-up.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 192.168.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 192.168.2.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show vlan-interface
vlan-2  Hwaddr 00:1A:9E:14:9F, Vlan:2, State:DOWN
   Inet addr: 192.168.1.1/24
        fe80::ca0a:aff:fe9e:149f/64
   Traffic statistics:
   IPv4 Input Packets..........................0
   IPv4 Forwarding Packets..................0
   IPv6 Input Packets..........................0
   IPv6 Forwarding Packets..................0

vlan-3  Hwaddr 00:1A:9E:14:9F, Vlan:3, State:UP
   Inet addr: 192.168.2.1/24
        fe80::ca0a:aff:fe9e:149f/64
   Traffic statistics:
   IPv4 Input Packets..........................0
   IPv4 Forwarding Packets..................0
   IPv6 Input Packets..........................0
```
IPv6 Forwarding Packets.......................0

XorPlus#

ARP Configuration

1. **Configuring ARP aging time**
 In the default setting, the ARP aging time is 1200 seconds.

   ```
   XorPlus# set protocols arp aging-time 600
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   ```

2. **Configuring a static ARP entry**

   ```
   XorPlus# set vlans vlan-id 2
   [edit]
   XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
   [edit]
   XorPlus# set vlans vlan-id 2 l3-interface vlan-2
   [edit]
   XorPlus# set vlan-interface interface vlan-2 address 192.168.1.1 prefix-length 24
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   ```

Dynamic ARP Inspection---DAI

DAI is a security feature that validates ARP packets in a network. DAI intercepts, and discards ARP packets with invalid IP-to-MAC address bindings. This capability protects the network from some man-in-the-middle attacks.

DAI ensures that only valid ARP requests and responses are relayed. The switch performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets

DAI determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database, the DHCP snooping binding database. This database is built by DHCP snooping if DHCP snooping is enabled on the VLANs and on the switch. If the ARP packet is received on a trusted interface, the switch forwards the packet without any checks. On untrusted interfaces, the switch forwards the packet only if it is valid.

DAI associates a trust state with each interface on the switch. Packets arriving on trusted interfaces bypass all DAI validation checks, and those arriving on untrusted interfaces undergo the DAI validation process.
In a typical network configuration, you configure all switch ports connected to host ports as untrusted and configure all switch ports connected to switches as trusted. With this configuration, all ARP packets entering the network from a given switch bypass the security check. No other validation is needed at any other place in the VLAN or in the network.

When configuring DAI, follow these guidelines and restrictions:

- DAI is an ingress security feature; it does not perform any egress checking.
- DAI is not effective for hosts connected to switches that do not support DAI or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, separate the domain with DAI checks from the one with no checking. This action secures the ARP caches of hosts in the domain enabled for DAI.
- DAI depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses.
- DAI is supported on access ports, trunk ports, lag ports.

DAI Configuration example

![Diagram of DAI configuration](image)

Figure-DAI

(1). Step 1: Enable DHCP snooping on Switch

You can enable dhcp snooping on the egress port, the port connected to DHCP Server

Enable dhcp snooping

```bash
XorPlus# set protocols dhcp snooping disable false
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
```

Set the interface to trust mode

```bash
XorPlus# set protocols dhcp snooping port te-1/1/50 trust true
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
```

(2). Step 2: enable DAI

You can enable DAI on the port connect to the host

Enable DAI

```bash
XorPlus# set protocols arp interface vlan-900 inspection disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(3). Step 3: Check arp inspection table
When the host got an IP address from the DHCP server and the switch have enabled dhcp snooping, it will create a table, IP-MAC-port binded table, the entry in this table was trusted, all other ARP packet will be discarded not in this table (The arp packet must be according with the arp inspection table, interface, IP address, MAC address must be identified).

```
XorPlus# run show arp inspection
Total count : 1
Interface  DAI       Address          HW Address
---------  ---------  ------------------  ------------------
vlan-900   Enabled   192.168.9.5      0:1e:c9:bb:d3:35
```

Static Routing Configuration

- In L2/L3, all routing entries will be configured to the ASIC switching chip if the outgoing VLAN-interface is link-up, and the outgoing interface is learning.

- Traffic that can be routed will have a route entry in the RIB and the ARP of the next hop; the outgoing interface should be link-up. The traffic will then be soft-routed (i.e., routed by the switch’s CPU).

- When the switch learns the MAC address of the next hop, the switch will forward the traffic with the ASIC chip.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 192.168.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-2 address 192.168.2.1 prefix-length 24
[edit]
XorPlus# set protocols static route 10.10.1.0/24 next-hop 192.168.2.5
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show route table ipv4 unicast final
10.10.1.0/24  [static(1)/1]
> to 192.168.2.5 via vlan-3/vlan-3
192.168.1.0/24  [connected(0)/0]
> via vlan-2/vlan-2
192.168.2.0/24  [connected(0)/0]
> via vlan-3/vlan-3
XorPlus#
```

```
XorPlus# run show route forward-route ipv4 all
Destination NetMask NextHopMac Port
---------- ----------- ------------- --------
10.10.1.0/16 255.255.255.0 00:1E:68:37:EF:7D ge-1/1/2
192.168.1.0  255.255.255.0 C8:0A:A9:04:49:29 connected
192.168.2.0  255.255.255.0 C8:0A:A9:04:49:29 connected
```
With the `show route forward-route ipv4 all` command, all the route entries in the ASIC chip will be displayed. Following the `show route table ipv4 unicast final` command, all routes in the RIB of the kernel will be displayed.

Static Routing Configuration Example

- An example of configuration with static routing is shown in Fig. 5-1.
- Host A and Host B should be able to communicate with each other.
- Host A and Host B should be able to communicate with the gateway (e.g., access Internet).

![Figure 5-1. Static routing configuration.](image)

(1) **Configuring Switch A**

ForSwitchA, you should configure 3 VLAN interfaces for networks 10.10.1.1/24, 10.10.3.1/24, and 10.10.6.1/24. You should also configure a static route to 10.10.2.0/24, and a default route.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 4
[edit]
```
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 4
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlans vlan-id 4 l3-interface vlan-4
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlans vlan-interface interface vlan-2 vif vlan-2 address 10.10.1.1 prefix-length 24
[edit]
XorPlus# set vlans vlan-interface interface vlan-3 vif vlan-2 address 10.10.3.1 prefix-length 24
[edit]
XorPlus# set vlans vlan-interface interface vlan-4 vif vlan-2 address 10.10.6.1 prefix-length 24
[edit]
XorPlus# set protocols static route 10.10.2.0/24 next-hop 10.10.6.2
[edit]
XorPlus# set protocols static route 0.0.0.0/0 next-hop 10.10.3.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show route table ipv4 unicast final
0.0.0.0/0 [static(1)/1]
0.0.0.0/0 [connected(0)/0]
0.0.0.0/0 [static(1)/1]
0.0.0.0/0 [connected(0)/0]
0.0.0.0/0 [connected(0)/0]
0.0.0.0/0 [connected(0)/0]
0.0.0.0/0 [connected(0)/0]

You can verify the route entry in the RIB as follows:

You can verify the route entry in the RIB as follows:

(2) Configuring Switch B
Configure 3 VLAN interfaces for networks 10.10.2.1/24, 10.10.4.1/24, and 10.10.6.2/24. Then configure a static route to 10.10.1.0/24, and a default route.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 4
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 4
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
Layer 3 Routing Configuration

[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlans vlan-id 4 l3-interface vlan-4
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.2.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-2 address 10.10.4.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-4vif vlan-2 address 10.10.6.1 prefix-length 24
[edit]
XorPlus# set protocols static route 10.10.1.0/24 next-hop 10.10.6.1
[edit]
XorPlus# set protocols static route 0.0.0.0/0 next-hop 10.10.4.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 0.0.0.0/0 next-hop 10.10.4.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show route table ipv4 unicast final
0.0.0.0/0/0 [static(1)/1]
> to 10.10.4.2 via vlan-3/vlan-3
10.10.1.0/24 [static(1)/1]
> to 10.10.6.1 via vlan-4/vlan-4
10.10.2.0/24 [connected(0)/0]
> via vlan-2/vlan-2
10.10.4.0/24 [connected(0)/0]
> via vlan-3/vlan-3
10.10.6.0/24 [connected(0)/0]
> via vlan-4/vlan-4
XorPlus#

You can verify the route entry in the RIB:

XorPlus# run show route table ipv4 unicast final
0.0.0.0/0 [static(1)/1]
> to 10.10.4.2 via vlan-3/vlan-3
10.10.1.0/24 [static(1)/1]
> to 10.10.6.1 via vlan-4/vlan-4
10.10.2.0/24 [connected(0)/0]
> via vlan-2/vlan-2
10.10.4.0/24 [connected(0)/0]
> via vlan-3/vlan-3
10.10.6.0/24 [connected(0)/0]
> via vlan-4/vlan-4
XorPlus#

(3) Configuring Switch C

Configure 3 VLAN interfaces for networks 10.10.3.2/24, 10.10.4.2/24, and 10.10.5.2/24. Then configure a static route to 10.10.1.0/24, and a default route.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 4
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 4
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlans vlan-id 4 l3-interface vlan-4
[edit]
XorPlus# commit
Waiting for merging configuration.
Layer 3 Routing Configuration

Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.3.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 10.10.4.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-4 vif vlan-4 address 10.10.5.2 prefix-length 24
[edit]
XorPlus# set protocols static route 10.10.1.0/24 next-hop 10.10.3.1
[edit]
XorPlus# set protocols static route 10.10.2.0/24 next-hop 10.10.4.1
[edit]
XorPlus# set protocols static route 10.10.6.0/24 next-hop 10.10.3.1
[edit]
XorPlus# set protocols static route 0.0.0.0/0 next-hop 10.10.5.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

You can verify the route entry in the RIB:

XorPlus# run show route table ipv4 unicast final
0.0.0.0/0 [static(1)/1]
> to 10.10.5.1 via vlan-4/vlan-4
 10.10.1.0/24 [static(1)/1]
> to 10.10.3.1 via vlan-2/vlan-2
 10.10.2.0/24 [static(1)/1]
> to 10.10.4.1 via vlan-3/vlan-3
 10.10.6.0/24 [static(1)/1]
> to 10.10.5.1 via vlan-2/vlan-2
 10.10.3.0/24 [connected(0)/0]
> via vlan-2/vlan-2
 10.10.4.0/24 [connected(0)/0]
> via vlan-3/vlan-3
 10.10.5.0/24 [connected(0)/0]
> via vlan-4/vlan-4
XorPlus#

RIPv2 Routing Protocol Configuration

- In L2/L3, RIPv2 is supported.
- A policy statement is used to specify which route entry will be distributed. For example, you can distribute the static route or the connected route to a neighbor. You can also specify the distributed route metric.
- You can configure the RIPv2 interface parameters (accept-default-route, advertise-default-route, deletion-delay, request-interval, update-interval).

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set vlans vlan-id 2 l3-interface interface vlan-2
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 192.168.1.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 192.168.2.1 prefix-length 24
[edit]
XorPlus# set protocols static route 9.9.0.24 next-hop 192.168.2.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set policy policy-statement connected-to-rip term export from protocol connected
[edit]
XorPlus# set policy policy-statement connected-to-rip term export then metric 0
[edit]
XorPlus# set policy policy-statement static-to-rip term export from protocol static
[edit]
XorPlus# set policy policy-statement static-to-rip term export then metric 1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols rip interface vlan-2vif vlan-2 address 192.168.1.1
[edit]
XorPlus# set protocols rip export "connected-to-rip,static-to-rip"
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

You can verify the RIP configuration:

XorPlus# run show rip status all

* RIP on vlan-2vlan-2 192.168.1.1
 Status: enabled
XorPlus#
XorPlus# run show rip statistics all

* RIP on vlan-2vlan-2 192.168.1.1
 Status: enabled

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests Sent</td>
<td>7</td>
</tr>
<tr>
<td>Updates Sent</td>
<td>6</td>
</tr>
<tr>
<td>Triggered Updates Sent</td>
<td>0</td>
</tr>
<tr>
<td>Non-RIP Updates Sent</td>
<td>0</td>
</tr>
<tr>
<td>Total Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Request Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Update Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Bad Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Authentication Failures</td>
<td>0</td>
</tr>
<tr>
<td>Bad Routes Received</td>
<td>0</td>
</tr>
<tr>
<td>Non-RIP Requests Received</td>
<td>0</td>
</tr>
</tbody>
</table>
RIPv2 Routing Configuration Example

- An example of configuring RIPv2 is shown in Fig. 5-2.
- Host A and Host B should be able to communicate with each other with an RIPv2 route.
- Host A and Host B should be able to communicate with the gateway (e.g., access Internet) with RIPv2.

Figure 5-2. RIPv2 routing configuration.

(1) Configuring Switch A

For Switch A, configure 2 VLAN interfaces for networks 10.10.1.1/24 and 10.10.3.1/24. You should also configure an RIPv2 interface in network 10.10.3.1/24. Switch A should accept the default route, which is advertised by Switch C.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
```
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 10.10.3.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.2.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 10.10.4.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set policy policy-statement connected-to-rip term export from protocol connected
[edit]
XorPlus# set policy policy-statement connected-to-rip term export then metric 0
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols rip interface vlan-3 address 10.10.3.1
[edit]
XorPlus# set protocols rip export "connected-to-rip"
[edit]
XorPlus# set protocols rip interface vlan-3 vif vlan-3 address 10.10.3.1 accept-default-route true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
(2) Configuring Switch B
Configure 2 VLAN interfaces for networks 10.10.1.1/24 and 10.10.3.1/24. Then configure an RIP interface in network 10.10.3.1/24. Switch B should accept the default route, which is advertised by Switch C.
XorPlus# set protocols rip interface vlan-3vif vlan-3 address 10.10.4.1
[edit]
XorPlus# set protocols rip export "connected-to-rip"
[edit]
XorPlus# set protocols rip interface vlan-3vif vlan-3 address 10.10.4.1 accept-default-route true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Configuring Switch C
Configure 3 VLAN interfaces for networks 10.10.3.2/24, 10.10.4.2/24, and 10.10.5.2/24. You should also configure a default route and 2 RIP interfaces.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 4
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 4
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlans vlan-id 4 l3-interface vlan-4
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan-2 address 10.10.3.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 10.10.4.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-4vif vlan-4 address 10.10.5.2 prefix-length 24
[edit]
XorPlus# set protocols static route 0.0.0.0/0 next-hop 10.10.5.1
[edit]
XorPlus# set protocols rip interface vlan-2vif vlan-2 address 10.10.3.2
[edit]
XorPlus# set protocols rip interface vlan-3vif vlan-3 address 10.10.4.2 advertise-default-route true
[edit]
XorPlus# set protocols rip interface vlan-3vif vlan-3 address 10.10.4.2 advertise-default-route true
[edit]
XorPlus# set protocols rip export "connected-to-rip"
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
(4) Verifying the RIP Configuration
You can verify the RIP configuration of the switches as shown below. (In our example, we verify the RIP peer and the RIP route table in Switch A.)

```
XorPlus# run show rip peer
Address          Interface        State   Hello Rx    Hello Tx    Last Hello
--------           ----------        -----    --------     --------     --------
10.10.3.2          vlan-3/vlan-3    Up       0            0           00:41:44
XorPlus#
```

```
XorPlus# run show route table ipv4 unicast rip
0.0.0.0/0 [rip(120)/1] > to 10.10.3.2 via vlan-3/vlan-3
10.10.2.0/24 [rip(120)/1] > to 10.10.3.2 via vlan-3/vlan-3
10.10.4.0/24 [rip(120)/1] > to 10.10.3.2 via vlan-3/vlan-3
```

OSPF Routing Protocol Configuration

- In L2/L3, OSPFv2 is supported.
- XorPlus supports normal areas, stub areas, and not-so-stubby areas (NSSAs) in OSPF.

(1) Configuring the router ID
The router ID should be configured first when you configure OSPF.

The router ID is a string similar to the IP address, and should be unique in the OSPF domain. You should not change the router ID after completing the configuration.

```
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(2) Configuring an OSPF area and area-type
Area 0.0.0.0 is the backbone area of OSPF; each OSPF domain should have the area 0.0.0.0. Area types include normal, stub, and NSSA.

```
XorPlus# set protocols ospf4 area 0.0.0.0 area-type normal
[edit]
XorPlus# set protocols ospf4 area 1.1.1.1 area-type stub
[edit]
XorPlus# set protocols ospf4 area 2.2.2.2 area-type nssa
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(3) Configuring OSPF interfaces
After configuring an OSPF area, configure OSPF interfaces in the area. These interfaces will transmit and receive LSAs to calculate the route.

```
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
```
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.60.10 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 10.10.61.10 prefix-length 24
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.60.10
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-3 vif vlan-3 address 10.10.61.10
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.60.10
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-3 vif vlan-3 address 10.10.61.10
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(4) Configuring additional OSPF interface parameters
You can also configure additional OSPF interface parameters (hello interval, interface-cost, static neighbor, priority, retransmit-interval, router-dead-interval, transmit-delay).

XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.60.10 hello-interval 5
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.60.10 interface-cost 8
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.60.10 transmit-delay 2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

OSPF Routing Basic Configuration Example
- Fig.5-3 presents an example of configuring OSPF routing. Switch A and Switch B are located in the backbone area, 0.0.0.0. There are two non-backbone areas, 1.1.1.1 and 2.2.2.2.

- Switch D will obtain the routes of networks 10.10.1.0/24, 10.10.3.0/24, and 10.10.9.0/24, through the LSAs sent from its neighbors. Switch C will obtain the routes of networks 10.10.1.0/24, 10.10.2.0/24, and 10.10.8.0/24, according to LSAs sent from its neighbors.
(1) Configuring Switch A
For switch A, configure 2 VLAN interfaces for networks 10.10.1.1/24 and 10.10.2.1/24. You should also configure area 0.0.0.0, which includes network 10.10.1.1/24, and area 0.0.0.1, which includes network 10.10.2.1/24.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 10.10.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 10.10.2.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2 vif vlan-2 address 10.10.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.1 interface vlan-3 vif vlan-3 address 10.10.2.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
(2) Configuring Switch B
Configure 2 VLAN interfaces for networks 10.10.1.2/24 and 10.10.3.1/24. Then configure area 0.0.0.0, which includes network 10.10.1.2/24, and area 0.0.0.3, which includes network 10.10.3.1/24.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 13-interface vlan=2
[edit]
XorPlus# set vlans vlan-id 3 13-interface vlan=3
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan=2 address 10.10.1.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan=3 address 10.10.3.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols ospf4 router-id 2.2.2.2
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2vif vlan=2 address 10.10.1.2
[edit]
XorPlus# set protocols ospf4 area 0.0.0.2 interface vlan-3vif vlan=3 address 10.10.3.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Configuring Switch C
Configure just one OSPF interface, in area 0.0.0.2.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 13-interface vlan=2
[edit]
XorPlus# set vlans vlan-id 3 13-interface vlan=3
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan=2 address 10.10.3.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan=3 address 10.10.9.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols ospf4 router-id 3.3.3.3
[edit]
XorPlus# set protocols ospf4 area 0.0.0.2 interface vlan-2vif vlan=2 address 10.10.3.2
[edit]
```
(4) Configuring Switch D

Configure just one OSPF interface, in area 0.0.0.1.

```
XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-id 2 address 10.10.2.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-id 3 address 10.10.8.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(5) Verifying the OSPF configuration

You can verify the OSPF configuration of a switch by checking its OSPF neighbor.

Below, switch A has two OSPF neighbor interfaces, 10.10.1.2 and 10.10.2.2.

```
XorPlus# run show ospf4 neighbor
Address          Interface              State     Router ID        Pri    Dead
---------------  ---------------------  --------  -------------    ----    ----
10.10.1.2/vlan-2 vlan-2 Full      2.2.2.2          1      32
10.10.2.2/vlan-3 vlan-3 Full      4.4.4.4          1      32

Then check the OSPF database as shown below:

```
XorPlus# run show ospf4 database
Type ID Adv Rtr Seq Age Opt Cksum Len
--------- --------------- ------------------- ---------- ---------- ----- -------
Router *1.1.1.1 1.1.1.1 0x80000025a 394 0x2 0xf2bb 48
Network *10.10.1.1 1.1.1.1 0x800000180 394 0x2 0xc0b9 32
Network *10.10.2.1 1.1.1.1 0x800000180 394 0x2 0xc0b9 32
Router 2.2.2.2 2.2.2.2 0x80000023e 339 0x2 0x3024 36
Network 10.10.3.1 2.2.2.2 0x800000180 394 0x2 0xc0b9 32
Router 3.3.3.3.3.3 0x80000023e 339 0x2 0x3024 36
```
**OSPF Configuration Example: NSSA/Stub/Normal**

- The configuration of an OSPF NSSA and a stub area are shown in Fig. 5-4.

- Switch D will obtain the routes of networks 10.10.1.0/24, 10.10.3.0/24, and 10.10.9.0/24, according to the LSAs received from its neighbors. Switch C will obtain the routes of networks 10.10.1.0/24, 10.10.2.0/24, and 10.10.8.0/24, according to the LSAs received from its neighbors.

- The figure below does not include RIP or BGP configurations.

![OSPF Configuration Example Diagram](image)

*Figure 5-4. OSPF NSSA, stub area configurations.*

1. **Configuring Switch A**
For switch A, configure 2 VLAN interfaces for networks 10.10.1.1/24 and 10.10.2.1/24. You should also configure area 0.0.0.0, which includes network 10.10.1.1/24, and area 0.0.0.1, which includes network 10.10.2.1/24.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan=2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan=3
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan=2 address 10.10.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan=3 address 10.10.2.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

(2) Configuring Switch B

Configure 2 VLAN interfaces for networks 10.10.1.2/24 and 10.10.3.1/24. Then configure area 0.0.0.0, which includes network 10.10.1.2/24, and stub area 0.0.0.3, which includes network 10.10.3.1/24.

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan=2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan=3
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan=2 address 10.10.1.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3vif vlan=3 address 10.10.3.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
**Layer 3 Routing Configuration**

(3) **Configuring Switch C**

Configure just one OSPF interface, in area 0.0.0.2.

```
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-2vif vlan-2 address 10.10.1.2
XorPlus# set protocols ospf4 area 0.0.0.2 interface vlan-3vif vlan-3 address 10.10.3.1
XorPlus# set protocols ospf4 area 0.0.0.2 area-type stub
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```   

(4) **Configuring Switch D**

Configure just one OSPF interface, in area 0.0.0.1. Switch D should import the RIP or BGP route from the RIB, and distribute it to other areas.

```
[edit]
XorPlus# set vlans vlan-id 2
XorPlus# set vlans vlan-id 3
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
XorPlus# set vlans vlan-id 2 13-interface vlan-2
XorPlus# set vlans vlan-id 3 13-interface vlan-3
XorPlus# set vlan-interface interface vlan-2vif vlan-2 address 10.10.3.2 prefix-length 24
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 10.10.9.1 prefix-length 24
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus# set protocols ospf4 router-id 3.3.3.3
XorPlus# set protocols ospf4 area 0.0.0.2 interface vlan-2vif vlan-2 address 10.10.3.2
XorPlus# set protocols ospf4 area 0.0.0.2 area-type stub
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus#```

© 2013 Pica8 Inc. All Rights Reserved.
OSPF Stub Area/NSSA Summary

By default, external routes and inter-area routes will be injected into stub areas or NSSAs. You can utilize the `summarizes disable true` parameter to prevent external or inter-area routes from being injected into stub areas or NSSAs. You can also use `set protocols ospf4 area <area-id> default-lsa disable false` to create a default route entry.

![OSPF Stub Area/NSSA Diagram](image)

Figure 5-5. OSPF Stub area/NSSA summary: area 1.1.1.1 should be a stub area or an NSSA.

(1) Configuring Switch A

```text
XorPlus# set vlans vlan-id 500 l3-interface vlan=500
[edit]
XorPlus# set vlan-interface interface vlan=500 vif vlan=500 address 192.168.1.2 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan=500 vif vlan=500 address 192.168.1.2
[edit]
```
OSPF Virtual Link Configuration Guide

- The single backbone area (area 0.0.0.0) cannot be disconnected, or certain areas of the Autonomous System will become unreachable. To establish and maintain connectivity of the backbone, virtual links can be configured through non-backbone areas. Virtual links serve to connect physically separate components of the backbone.

- The two endpoints of a virtual link are Area Border Routers (ARBs). The virtual link must be configured in both routers. The configuration information in each router consists of the other virtual endpoint (the other ARB), and the non-backbone area that the two routers have in common (called the transit area). Virtual links cannot be configured through stub areas.

- Enable OSPF on Switches A, B, C, and D at the beginning. There is no route entry from the backbone area (0.0.0.0) to area 2.2.2.2.

![Diagram showing virtual link configuration](image)

Figure 5-7. Virtual link configuration.

1. **Configuring Switch A**

   ```
   XorPlus# commit
   [edit]
   Waiting for merging configuration.
   Commit OK.
   Save Done.
   [edit]
   XorPlus#
   ```

2. **Configuring Switch B**

   ```
   XorPlus# set vlans vlan-id 400 l3-interface vlan-400
   [edit]
   ```

XorPlus# set vlan-interface interface vlan=400 vif vlan=400 address 172.25.150.250 prefix-length 30
[edit]
XorPlus# set vlans vlan-id 500 l3-interface vlan=500
[edit]
XorPlus# set vlan-interface interface vlan=500 vif vlan=500 address 192.168.1.1 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/48 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set interface gigabit-ethernet ge-1/2 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 router-id 4.4.4.4
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan=500 vif vlan=500 address 192.168.1.1
[edit]
XorPlus#commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(3) Configuring Switch C

XorPlus# set vlans vlan-id 300 l3-interface vlan=300
[edit]
XorPlus# set vlan-interface interface vlan=300 vif vlan=300 address 172.25.150.246 prefix-length 30
[edit]
XorPlus# set vlans vlan-id 400 l3-interface vlan=400
[edit]
XorPlus# set vlan-interface interface vlan=400 vif vlan=400 address 172.25.150.249 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 300
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/51 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 router-id 3.3.3.3
[edit]
XorPlus# set protocols ospf4 area 2.2.2.2 interface vlan=300 vif vlan=300 address 172.25.150.246
[edit]
XorPlus# set protocols ospf4 area 1.1.1.1 interface vlan=400 vif vlan=400 address 172.25.150.249
[edit]
XorPlus#commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(4) Configuring Switch D

XorPlus# set vlans vlan-id 300 l3-interface vlan=300
[edit]
XorPlus# set vlan-interface interface vlan=300 vif vlan=300 address 172.25.150.245 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 300
[edit]
XorPlus# set protocols ospf4 router-id 2.2.2.2
[edit]
Enable virtual links on the Area Border Routers (Switch B and Switch C). After this step, there will be a route entry from the backbone area, 0.0.0.0, to area 2.2.2.2.

(1) Configuring Switch B

XorPlus# set protocols ospf4 area 2.2.2.2 interface vlan-300 vif vlan-300 address 172.25.150.245
[edit]
XorPlus#commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(2) Configuring Switch C

XorPlus# set protocols ospf6 area 0.0.0.0 virtual-link 3.3.3.3 transmit-area 1.1.1.1
XorPlus#commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(3) Checking an IPv6 OSPF

```plaintext
# Check ipv6 ospf neighbor on Switch B
XorPlus# run show ospf4 neighbor
Address          Interface              State     Router ID        Pri    Dead
--------------- ---------------------- -------- --------------- ------ ------
192.168.1.2      vlan-500/vlan-500      Full      1.1.1.1          128    34
172.25.150.249   vlan-400/vlan-400      Full      3.3.3.3          128    36
172.25.150.249   vlink/3.3.3.3          Init      3.3.3.3          0      0
```

(2) Configuring Switch B

XorPlus# set vlans vlan-id 500 l3-interface vlan-500
[edit]
XorPlus# set vlan-interface interface vlan-500 vif vlan-500 address 192.168.1.1 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set protocols ospf4 router-id 4.4.4.4
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-100 vif vlan-500 address 192.168.1.1
[edit]
XorPlus# set vlans vlan-id 400 l3-interface vlan-400
[edit]
XorPlus# set vlan-interface interface vlan-400 vif vlan-400 address 172.25.150.250 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 400
Configuring Switch C

XorPlus# set vlans vlan-id 400 l3-interface interface vlan-400

XorPlus# set vlan-interface interface vlan-400 vif vlan-400 address 172.25.150.249 prefix-length 30

XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 400

XorPlus# set protocols ospf4 router-id 3.3.3.3

XorPlus# commit

Waiting for merging configuration.

Commit OK.

Save Done.

XorPlus#

Configuring area 1.1.1.1 as as stub area or NSSA

XorPlus# set protocols ospf4 area 1.1.1.1 area-type <normal | stub | nssa>

XorPlus# commit

Waiting for merging configuration.

Commit OK.

Save done.

XorPlus#

Disabling the summary function on ABR(DUT2 area 1.1.1.1)

XorPlus# set protocols ospf4 area 1.1.1.1 summaries disable true

XorPlus# commit

Waiting for merging configuration.

Commit OK.

Save done.

XorPlus#
Enable default-lsa function on ABR(DUT2)
XorPlus# run show route forward-route ipv4 all

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>NextHopMac</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.25.150.248</td>
<td>255.255.255.252</td>
<td>08:9E:01:62:D5:61</td>
<td>connected</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>60:EB:69:9B:BE:31</td>
<td>te-1/1/51</td>
</tr>
</tbody>
</table>

Total route count: 2

OSPF Area Range Configuration Guide

- OSPF should aggregate the route entries from the backbone area into a non-backbone area, or from a non-backbone area into the backbone area. Route aggregation works only on the ABR.

- You can use the “advertisedisable” parameter to restrain ABR route aggregation. The ABR will generate route aggregation by default after you configure **area-range**, and the packet is routed to the best (the longest or most specific) match.

![Figure 5-6. OSPF area range configuration.](image)

(1) **Configuring Switch A**

XorPlus# set vlans vlan-id 500 l3-interface vlan-500
[edit]
XorPlus# set vlan-interface interface vlan-500 vif vlan-500 address 192.168.1.2 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-500 vif vlan-500 address 192.168.1.2
[edit]
XorPlus# commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(2) **Configuring Switch B**

XorPlus# set vlans vlan-id 500 l3-interface vlan-500
[edit]
XorPlus# set vlan-interface interface vlan-500 vif vlan-500 address 192.168.1.1 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set protocols ospf4 router-id 4.4.4.4
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-100 vif vlan-500 address 192.168.1.1
[edit]
XorPlus# set vlans vlan-400 l3-interface vlan-400
[edit]
XorPlus# set vlan-interface interface vlan-400 vif vlan-400 address 192.168.1.1 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-400 vif vlan-400 address 192.168.1.1
[edit]
XorPlus# commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(3) Configuring Switch C

XorPlus# set vlans vlan-id 400 l3-interface vlan-400
[edit]
XorPlus# set vlan-interface interface vlan-400 vif vlan-400 address 172.25.150.250 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 router-id 3.3.3.3
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-400 vif vlan-400 address 172.25.150.250
[edit]
XorPlus# commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(4) Checking the route table on Switch C

Therewill be a30-bit route entry, 192.168.1.0/30.

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>NextHopMac</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.25.150.248</td>
<td>255.255.255.252</td>
<td>08:9E:01:62:D5:61</td>
<td>connected</td>
</tr>
<tr>
<td>192.168.1.0</td>
<td>255.255.255.252</td>
<td>60:EB:69:9B:BE:31</td>
<td>te-1/1/51</td>
</tr>
</tbody>
</table>

Total route count: 2

(5) Configuring area-range on ABR(DUT2)

XorPlus# set protocols ospf4 area 0.0.0.0 area-range 192.168.1.0/24 advertise true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
(6) Checking the route table on DUT3
The route entry 192.168.1.0/30 will be replaced by 192.168.1.0/24.

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>NextHopMac</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.25.150.248</td>
<td>255.255.255.252</td>
<td>08:9E:01:62:D5:61</td>
<td>connected</td>
</tr>
<tr>
<td>192.168.1.0</td>
<td>255.255.255.0</td>
<td>60:EB:69:9B:BE:31</td>
<td>te-1/1/51</td>
</tr>
</tbody>
</table>

Total route count: 2

Importing an External Route into an OSPF Area

Figure 5-8. Importing an external route into an OSPF area.

(1) Configuring Switch A

XorPlus# set vlans vlan-id 500 l3-interface vlan-500
[edit]
XorPlus# set vlan-interface interface vlan-500 vif vlan-500 address 192.168.1.1.2 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/47 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-500 vif vlan-500 address 192.168.1.2
[edit]
XorPlus# commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(2) Configuring Switch B

XorPlus# set vlans vlan-id 400 l3-interface vlan-400
[edit]
XorPlus# set vlan-interface interface vlan-400 vif vlan-400 address 172.25.150.250 prefix-length 30
[edit]
XorPlus# set vlans vlan-id 500 l3-interface vlan-500
[edit]
XorPlus# set vlan-interface interface vlan-500 vif vlan-500 address 192.168.1.1.1 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/48 family ethernet-switching native-vlan-id 500
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 router-id 4.4.4.4
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-500 vif vlan-500 address 192.168.1.1
[edit]
XorPlus# set protocols ospf4 area 1.1.1.1 interface vlan-400 vif vlan-400 address 172.25.150.250
[edit]
XorPlus#commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(3) Configuring Switch C

XorPlus# set vlans vlan-id 300 l3-interface vlan=300
[edit]
XorPlus# set vlan-interface interface vlan=300 vif vlan=300 address 172.25.150.246 prefix-length 30
[edit]
XorPlus# set vlans vlan-id 400 l3-interface vlan=400
[edit]
XorPlus# set vlan-interface interface vlan=400 vif vlan=400 address 172.25.150.249 prefix-length 30
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 family ethernet-switching native-vlan-id 300
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/51 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# set protocols ospf4 router-id 3.3.3.3
[edit]
XorPlus# set protocols ospf4 area 2.2.2.2 interface vlan=300 vif vlan=300 address 172.25.150.246
[edit]
XorPlus# set protocols ospf4 area 1.1.1.1 interface vlan=400 vif vlan=400 address 172.25.150.249
[edit]
XorPlus# commit
[edit]
Waiting for merging configuration.
Commit OK.
Save Done.
[edit]
XorPlus#

(4) Configuring an external route import policy on Switch C

Configure external static route.
XorPlus# set protocols static route 192.168.6.0/24 next-hop 172.25.150.245
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure policy to import external route
XorPlus# set policy policy-statement static term 1 from protocol static
[edit]
XorPlus# set policy policy-statement static then accept
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Using policy on ospf
XorPlus# set protocols ospf4 export static
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
Layer 3 Routing Configuration

BFD Protocol Configuration

- BFD supports for OSPF, BGP, static route and ECMP.

(5) Configuring the mode
There are two BFD modes: active and passive.

The BFD will send protocol messages initiatively in active mode, and passively in passive mode.

XorPlus# set protocols bfd mode active
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bfd mode passive
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#

(6) Configuring detect-multiplier, min-receive-interval and min-transmit-interval
Detect-multiplier: a detection timeout multiple, it is used in calculating detection timeout time by the detector; min-receive-interval: the minimum sending interval of the BFD packet supported by the local side; min-transmit-interval: the minimum receiving interval of the BFD packet supported by the local side.

XorPlus# set protocols bfd interface vlan25 detect-multiplier 5
[edit]
XorPlus# set protocols bfd interface vlan25 min-transmit-interval 1000
[edit]
XorPlus# set protocols bfd interface vlan25 min-receive-interval 2000
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(7) Enable BFD on L3 interface
Enable BFD on the VLAN interface.

XorPlus# set protocols bfd interface vlan25 disable false
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
(8) Enable BFD supporting for OSPF4
Enable BFD to support for protocol OSPF4.

```
XorPlus# set protocols ospf4 area 1.1.1.1 interface vlan-25 vif vlan-25 address 125.125.25.6 bfd disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(9) Enable BFD supporting for OSPF6
Enable BFD to support for protocol OSPF6.

```
XorPlus# set protocols ospf6 area 1.1.1.1 interface vlan-23 vif vlan-23 address 125.125.25.6 bfd disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(10) Enable BFD supporting for BGP
Enable BFD to support for protocol BGP.

```
XorPlus# set protocols bgp peer 125.125.25.1 bfd disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(11) Enable BFD supporting for static route
Enable BFD to support for protocol static route.

```
XorPlus# set protocols static route 201.201.20.0/24 next-hop 113.113.13.1
[edit]
XorPlus# set protocols static route 201.201.20.0/24 bfd true
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus#
```

(12) Enable BFD supporting for ECMP
Enable BFD to support for protocol ECMP.

```
XorPlus# set protocols static route 201.201.20.0/24 next-hop 113.113.13.1
[edit]
XorPlus# set protocols static route 201.201.20.0/24 bfd true
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 201.201.20.0/24 qualified-next-hop 115.115.15.1 bfd true
[edit]
```
Layer 3 Routing Configuration

BFD Basic Configuration Example

- Fig.5-9 presents an example of configuring BFD supporting for OSPF4. Switch A and Switch B are located in the backbone area, 0.0.0.0.

(6) Configuring Switch A

For switch A, configure one VLAN interface for networks 123.123.10.1/24. You should also configure area 0.0.0.0, which includes network 123.123.10.1/24 and 123.123.10.6/24, and enable BFD on OSPF4 and VLAN interface.

```plaintext
XorPlus# set vlans vlan-id 10
[edit]
XorPlus# set vlans vlan-id 10 l3-interface vlan10
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
[edit]
XorPlus# set vlan-interface interface vlan10 vif vlan10 address 123.123.10.1 prefix-length 24
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan10 vif vlan10 address 123.123.10.1 bfd disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bfd interface vlan10 disable false
[edit]
```
(7) Configuring Switch B

For switch B, configure one VLAN interface for networks 123.123.10.6/24. You should also configure area 0.0.0.0, which includes network 123.123.10.1/24 and 123.123.10.6/24, and enable BFD on OSPF4 and VLAN interface.

```
XorPlus# set vlans vlan-id 10
[edit]
XorPlus# set vlans vlan-id 10 l3-interface vlan-10
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
[edit]
XorPlus# set vlan-interface interface vlan-10 vif vlan-10 address 123.123.10.6 prefix-length 24
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
```

```
XorPlus# set protocols ospf4 router-id 2.2.2.2
[edit]
XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan-10 vif vlan-10 address 123.123.10.6 bfd disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bfd interface vlan-10 disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
```

(8) Verifying the BFD configuration

You can verify the BFD configuration of a switch by checking its BFD neighbor.

```
XorPlus# run show bfd neighbor ipv4
Detect    Transmit
Local Address    Remote Address   Interface  State      Time(ms)  Interval(ms)  Multiplier
---------------  -------------   --------  -------  --------  --------  ---------
123.123.10.1     123.123.10.6     vlan10     Up         1500      500          
```

- Fig.5-10 presents an example of configuring BFD supporting for static route.
(1) Configuring Switch A
For switch A, configure one VLAN interface for networks 123.123.10.1/24. You should also configure static route whose next hop direct to network 123.123.10.6/24, and enable BFD on static route and VLAN interface.

XorPlus# set vlans vlan-id 10
[edit]
XorPlus# set vlans vlan-id 10 l3-interface vlan10
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
[edit]
XorPlus# set vlan-interface interface vlan10 vif vlan10 address 123.123.10.1 prefix-length 24
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 200.200.10.0/24 next-hop 123.123.10.6
[edit]
XorPlus# set protocols static route 200.200.10.0/24 bfd true
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bfd interface vlan10 disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]

(2) Configuring Switch B
For switch B, configure one VLAN interface for networks 123.123.10.6/24. You should also configure static route whose next hop direct to network 123.123.10.1/24, and enable BFD on static route and VLAN interface.

XorPlus# set vlans vlan-id 10
[edit]
XorPlus# set vlans vlan-id 10 l3-interface vlan10
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
[edit]
XorPlus# set vlan-interface interface vlan10 vif vlan10 address 123.123.10.6 prefix-length 24
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 178.178.10.0/24 next-hop 123.123.10.1
[edit]
XorPlus# set protocols static route 178.178.10.0/24 bfd true
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bfd interface vlan-10 disable false
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Verifying the BFD configuration
You can verify the BFD configuration of a switch by checking its BFD neighbor.

XorPlus# run show bfd neighbor ipv4

<table>
<thead>
<tr>
<th>Local Address</th>
<th>Remote Address</th>
<th>Interface</th>
<th>State</th>
<th>Detect Time (ms)</th>
<th>Transmit Interval (ms)</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.123.10.1</td>
<td>123.123.10.6</td>
<td>vlan10</td>
<td>Up</td>
<td>1500</td>
<td>500</td>
<td>3</td>
</tr>
</tbody>
</table>

BGP Configuration Guide

(1) Configuring a BGP router ID
The router ID should be configured first when you configure BGP. The router ID is a string similar to the IP address, and is the identifier of a BGP router in an AS. You should not change the router ID after completing the configuration.

By default, the BGP router ID is not configured.

XorPlus# set protocols bgp bgp-id 1.1.1.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring BGP localAS
The localAS (autonomous system) should be configured first when you configure BGP.

The AS_Path attribute records all the AS’s that a route passes through from the source to the destination, following the order of vectors.

XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# commit
Waiting for merging configuration.
(3) Configuring external BGP peering

If the AS number of the specified peer is different from the local AS number during the configuration of BGP peers, an EBGP peer is configured.

To establish point-to-point connections between peer autonomous systems, configure a BGP session on each interface of a point-to-point link. Generally, such sessions are made at network exit points with neighboring hosts outside the AS.

XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 next-hop-self true[edit]
XorPlus# set protocols bgp peer 192.168.49.1 local-ip 192.168.49.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(4) Configuring internal BGP peering

If the AS number of the specified peer is the same as the local AS number during the configuration of BGP peers, an IBGP peer is configured.

XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 next-hop-self true[edit]
XorPlus# set protocols bgp peer 192.168.49.1 local-ip 192.168.49.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(5) Configuring the BGP Local Preference

Internal BGP (IBGP) sessions use a metric called the local preference, which is carried in IBGP update packets in the path attribute LOCAL_PREF. When an autonomous system (AS) has multiple routes to another AS, the local preference indicates the degree of preference for one route over the other routes. Expectedly, the route with the highest local preference value is preferred.

XorPlus# set policy policy-statement send-network term t1 from network 172.168.200.0/24
[edit]
XorPlus# set policy policy-statement send-network term t1 from protocol bgp
[edit]
XorPlus# set policy policy-statement send-network term t1 then localpref 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
(6) Configuring BGP MED

The multi-exit discriminator (MED) helps determine the optimal route for the incoming traffic of an AS, and is similar to the metric used in IGP. When a BGP device obtains multiple routes to the same destination address but with different next hops from EBGP peers, the BGP device selects the route with the smallest MED value as the optimal route.

```
XorPlus# set protocols bgp peer 192.168.49.1 export send-network
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

```
XorPlus# set policy policy-statement send-network term t1 from network 172.168.200.0/24
[edit]
XorPlus# set policy policy-statement send-network term t1 from protocol bgp
[edit]
XorPlus# set policy policy-statement send-network term t1 then med 200
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

```
XorPlus# set protocols bgp peer 192.168.49.1 export send-network
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(7) Configuring BGP nexthop

- When an Autonomous System Boundary Router (ASBR) forwards the route learned from an EBGP peer to an IBGP peer, the ASBR, by default, does not change the next hop of the route. When the IBGP peer receives this route, it finds the next hop unreachable, sets the route to inactive, and does not use this route to guide traffic forwarding.

- To enable the IBGP peer to use this route to guide traffic forwarding, configure the ASBR to set its IP address as the next hop of the route when the ASBR forwards this route to the IBGP peer. After the IBGP peer receives this route from the ASBR, it finds the next hop of the route reachable, sets the route to active, and uses this route to guide traffic forwarding.

- When a BGP route changes, BGP needs to iterate the indirect next hop of the route again. If no restriction is imposed on the iterated route, BGP may iterate the next hop to an incorrect forwarding path, causing traffic loss. Configure routing policy-based route iteration to prevent traffic loss.

```
XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 next-hop-self true[edit]
XorPlus# set protocols bgp peer 192.168.49.1 local-ip 192.168.49.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
```
(8) Configuring BGP route reflectors

- To ensure the connectivity between IBGP peers within an AS, you need to establish fullmesh connections between the IBGP peers. When there are many IBGP peers, it is costly to establish a fullymeshed network. A route reflector (RR) can solve this problem.

- A cluster ID can help prevent routing loops between multiple RRs within a cluster, and between clusters. When a cluster has multiple RRs, the same cluster ID must be configured for all RRs within the cluster.

- If full-mesh IBGP connections are established between clients of multiple RRs, route reflection between clients is not required and wastes bandwidth resources. In this case, prohibit route reflection between clients to reduce the network burden.

- Within an AS, an RR transmits routing information and forwards traffic. When an RR connects to a large number of clients and non-clients, many CPU resources are consumed if the RR transmits routing information and forwards traffic simultaneously. This also reduces route transmission efficiency. To improve route transmission efficiency, prohibit BGP from adding preferred routes to IP routing tables on the RR, enabling the RR to only transmit routing information.

```
XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 next-hop-self true[edit]
XorPlus# set protocols bgp peer 192.168.49.1 local-ip 192.168.49.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bgp route-reflector cluster-id 16.16.16.16
[edit]
XorPlus# set protocols bgp route-reflector disable false
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 client true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(9) Configuring BGP confederations

A confederation divides an AS into sub-AS’s, which establish EBGP connections. Within each sub-AS, IBGP peers establish fullmesh connections or have an RR configured. On a large BGP network, configuring a confederation can reduce the number of IBGP connections, simplify routing policy management, and improve route advertisement efficiency.

```
XorPlus# set protocols bgp local-as 65533
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 as 65533
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 next-hop-self true
[edit]
```
XorPlus# set protocols bgp peer 192.168.49.1 local-ip 192.168.49.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set protocols bgp confederation identifier 2000
[edit]
XorPlus# set protocols bgp confederation disable false
[edit]
XorPlus# set protocols bgp peer 192.168.49.1 confederation-member true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(10) Configuring the BGP connect timer
Hold timers can be configured for all peers. The proper maximum interval at which Keepalive messages are sent is one third the holdtime.

XorPlus# set protocols bgp peer 192.168.49.1 holdtime 30
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(11) Configuring MD5 authentication for TCP connections
Configure Message Digest5 (MD5) authentication on a TCP connection between two BGP peers. The two peers must have the same configured password to establish TCP connections.

XorPlus# set protocols bgp peer 192.168.11.10 md5-password pica8
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(12) Configuring EBGPfast-external-fallover
This feature allows BGP to immediately respond to a fault on an interface, and delete the direct EBGP sessions on the interface without waiting for the hold timer to expire. It implements rapid BGP network convergence.

By default, EBGP fast-external-fallover is disabled.

XorPlus# set protocols bgp fast-external-fallover disable false
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(13) Configuring BGP route summarization

Configure automatic route summarization as follows:

XorPlus# set protocols bgp auto-summary true
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

bgp auto-summary true summarizes the routes exported by BGP.

To configure manual route summarization:

XorPlus# set protocols bgp aggregate network4 192.168.1.0/24 suppress-detail true
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(14) Configuring BGP to advertise default routes to peers

The BGP device can be configured to send only a default route, with the local address as the nexthop address, to its peer, regardless of whether there are default routes in the local routing table.

XorPlus# set protocols bgp peer 192.168.11.10 default-route-advertise
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(15) Configuring BGP to remove private AS numbers

Private autonomous system (AS) numbers that range from 64512 to 65535 are used to conserve globally unique AS numbers. BGP can remove private AS numbers from updates to a peer.

XorPlus# set protocols bgp peer 192.168.11.10 public-as-only
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(16) Configuring BGP AS loop

Repeated local AS numbers are allowed in routes. In the default setting, however, repeated local AS numbers are not allowed.

XorPlus# set protocols bgp peer 192.168.11.10 allow-as-loop true
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
(17) Configuring BGP load balancing

If multiple paths to a destination exist, you can configure load balancing over such paths to improve link utilization.

Enable BGP load balancing:

```
XorPlus# set protocols bgp multipath disable false
XorPlus# commit
```
Waiting for merging configuration.
Commit OK. Save done. [edit] XorPlus#

BGP will not load balance across multiple paths by default. This is acceptable if you are multihomed to a single AS, but what if you are multihomed to different AS paths? In that case, you cannot load balance across theoretically equal paths. Enter the **BGP multipath path-relax** command:

```
XorPlus# set protocols bgp multipath path-relax true
XorPlus# commit
```
Waiting for merging configuration.
Commit OK. Save done. [edit] XorPlus#

BGP Basic Configuration Example

- As shown in Fig. 5-9, BGP runs between switches. An EBGP connection is established between SwitchA and SwitchB, and IBGP fullmesh connections are established between SwitchB, SwitchC, and SwitchD.

- Configure IBGP connections between SwitchB, SwitchC, and SwitchD.

- Configure an EBGP connection between SwitchA and SwitchB.

```
SwitchA
  Ge-1/1/1 Vlan10 192.168.10.1/24
  Ge-1/1/2 Vlan20 192.168.20.1/24

SwitchB
  Ge-1/1/1 Vlan10 192.168.10.1/24
  Ge-1/1/2 Vlan20 192.168.20.2/24
  Ge-1/1/3 Vlan30 192.168.30.1/24

SwitchC
  Ge-1/1/4 Vlan40 192.168.40.1/24

SwitchD
  Ge-1/1/3 Vlan30 192.168.30.2/24
  Ge-1/1/5 Vlan50 192.168.50.1/24

Ge-1/1/5 Vlan50 192.168.50.2/24
```

Figure 5-9. BGP configuration.

(7) Configuring SwitchA

Configure the VLAN that each interface belongs to.
Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface 10 vif 10 address 192.168.10.1 prefix-length 24
XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.1 prefix-length 24
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

Configure an EBGP connection.

XorPlus# set protocols bgp bgp-id 1.1.1.1
XorPlus# set protocols bgp local-as 100
XorPlus# set protocols bgp peer 192.168.20.2 as 200
XorPlus# set protocols bgp peer 192.168.20.2 local-ip 192.168.20.1
XorPlus# set protocols bgp peer 192.168.20.2 next-hop-self true
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

(8) Configuring Switch B
Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 20 13-interface 20
XorPlus# set vlans vlan-id 30 13-interface 30
XorPlus# set vlans vlan-id 40 13-interface 40
XorPlus# commit
Waiting for merging configuration.
Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.2 prefix-length 24 [edit]
XorPlus# set vlan-interface interface 30 vif 30 address 192.168.30.1 prefix-length 24 [edit]
XorPlus# set vlan-interface interface 40 vif 40 address 192.168.40.1 prefix-length 24 [edit]
```

Configure EBGP and IBGP connections.

```
XorPlus# set protocols bgp bgp-id 2.2.2.2 [edit]
XorPlus# set protocols bgp local-as 200 [edit]
XorPlus# set protocols bgp peer 192.168.20.1 as 100 [edit]
XorPlus# set protocols bgp peer 192.168.20.1 local-ip 192.168.20.2 [edit]
XorPlus# set protocols bgp peer 192.168.20.1 next-hop-self true [edit]
XorPlus# set protocols bgp peer 192.168.30.2 as 200 [edit]
XorPlus# set protocols bgp peer 192.168.30.2 local-ip 192.168.30.1 [edit]
XorPlus# set protocols bgp peer 192.168.30.2 next-hop-self true [edit]
XorPlus# set protocols bgp peer 192.168.40.2 as 200 [edit]
XorPlus# set protocols bgp peer 192.168.40.2 local-ip 192.168.40.1 [edit]
XorPlus# set protocols bgp peer 192.168.40.2 next-hop-self true [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(9) Configuring Switch C

Configure the VLAN that each interface belongs to.
Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlans vlan-id 40 13-interface 40
[edit]
XorPlus# set vlans vlan-id 50 13-interface 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 40
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure an IBGP connection.

XorPlus# set protocols bgp bgp-id 3.3.3.3
[edit]
XorPlus# set protocols bgp local-as 200
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 local-ip 192.168.40.2
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 local-ip 192.168.50.2
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 next-hop-self true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(10) Configuring Switch D
Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 30 13-interface 30
[edit]
XorPlus# set vlans vlan-id 50 13-interface 50
[edit]
XorPlus# commit
Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 30 vif 40 address 192.168.30.2 prefix-length 24
XorPlus# set vlan-interface interface 50 vif 50 address 192.168.50.1 prefix-length 24
```

Configure an IBGP connection.

```
XorPlus# set protocols bgp bgp-id 4.4.4.4
XorPlus# set protocols bgp local-as 200
XorPlus# set protocols bgp peer 192.168.30.1 as 200
XorPlus# set protocols bgp peer 192.168.30.1 local-ip 192.168.30.2
XorPlus# set protocols bgp peer 192.168.30.1 next-hop-self true
XorPlus# set protocols bgp peer 192.168.50.2 as 200
XorPlus# set protocols bgp peer 192.168.50.2 local-ip 192.168.50.1
XorPlus# set protocols bgp peer 192.168.50.2 next-hop-self true
```

(11) Viewing BGP peer statuses on SwitchB

```
XorPlus# run show bgp peers detail
Peer 2: local 192.168.10.2/179 remote 192.168.10.1/179
  Peer ID: 1.1.1.1
  Peer State: ESTABLISHED
  Admin State: START
  Negotiated BGP Version: 4
  Peer AS Number: 100
  Updates Received: 20, Updates Sent: 2
  Messages Received: 634, Messages Sent: 611
  Time since last received update: 1685 seconds
  Number of transitions to ESTABLISHED: 1
```

Waiting for merging configuration.
Commit OK.
Save done.
```
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 30
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
```

Waiting for merging configuration.
Commit OK.
Save done.
```
XorPlus# commit
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 30
```

Waiting for merging configuration.
Commit OK.
Save done.
```
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
```

Waiting for merging configuration.
Commit OK.
Save done.
```
XorPlus# commit
```

Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 30 vif 40 address 192.168.30.2 prefix-length 24
XorPlus# set vlan-interface interface 50 vif 50 address 192.168.50.1 prefix-length 24
```

Configure an IBGP connection.

```
XorPlus# set protocols bgp bgp-id 4.4.4.4
XorPlus# set protocols bgp local-as 200
XorPlus# set protocols bgp peer 192.168.30.1 as 200
XorPlus# set protocols bgp peer 192.168.30.1 local-ip 192.168.30.2
XorPlus# set protocols bgp peer 192.168.30.1 next-hop-self true
XorPlus# set protocols bgp peer 192.168.50.2 as 200
XorPlus# set protocols bgp peer 192.168.50.2 local-ip 192.168.50.1
XorPlus# set protocols bgp peer 192.168.50.2 next-hop-self true
```

(11) Viewing BGP peer statuses on SwitchB

```
XorPlus# run show bgp peers detail
Peer 2: local 192.168.10.2/179 remote 192.168.10.1/179
  Peer ID: 1.1.1.1
  Peer State: ESTABLISHED
  Admin State: START
  Negotiated BGP Version: 4
  Peer AS Number: 100
  Updates Received: 20, Updates Sent: 2
  Messages Received: 634, Messages Sent: 611
  Time since last received update: 1685 seconds
  Number of transitions to ESTABLISHED: 1
```
Time since last entering ESTABLISHED state: 15995 seconds
Retry Interval: 120 seconds
Hold Time: 90 seconds, Keep Alive Time: 30 seconds
Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
Minimum AS Origionation Interval: 0 seconds
Minimum Route Advertisement Interval: 0 seconds

Peer 2: local 192.168.30.1/179 remote 192.168.30.2/179
Peer ID: 4.4.4.4
Peer State: ESTABLISHED
Admin State: START
Negotiated BGP Version: 4
Peer AS Number: 100
Updates Received: 20, Updates Sent: 2
Messages Received: 634, Messages Sent: 611
Time since last received update: 1685 seconds
Number of transitions to ESTABLISHED: 1
Time since last entering ESTABLISHED state: 15995 seconds
Retry Interval: 120 seconds
Hold Time: 90 seconds, Keep Alive Time: 30 seconds
Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
Minimum AS Origionation Interval: 0 seconds
Minimum Route Advertisement Interval: 0 seconds

Peer 3: local 192.168.40.1/179 remote 192.168.40.2/179
Peer ID: 3.3.3.3
Peer State: ESTABLISHED
Admin State: START
Negotiated BGP Version: 4
Peer AS Number: 100
Updates Received: 20, Updates Sent: 2
Messages Received: 634, Messages Sent: 611
Time since last received update: 1685 seconds
Number of transitions to ESTABLISHED: 1
Time since last entering ESTABLISHED state: 15995 seconds
Retry Interval: 120 seconds
Hold Time: 90 seconds, Keep Alive Time: 30 seconds
Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
Minimum AS Origionation Interval: 0 seconds
Minimum Route Advertisement Interval: 0 seconds

(12) Configuring Switch A to advertise route 192.168.10.0/24

XorPlus# set policy policy-statement direct-to-bgp term t1 from protocol connected [edit]
XorPlus# set policy policy-statement direct-to-bgp term t1 from network 192.168.10.0/24 [edit]
XorPlus# set policy policy-statement direct-to-bgp term t1 then accept [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bgp export direct-to-bgp [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

View the BGP routing table of Switch B:
XorPlus# run show bgp routes
Status Codes: * valid route, > best route
Origin Codes: i IGP, e EGP, ? incomplete

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>Peer</th>
<th>AS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 192.168.10.0/24</td>
<td>192.168.20.11.1.1</td>
<td>100 ?</td>
<td></td>
</tr>
</tbody>
</table>

XorPlus#

View the BGP routing table of SwitchC:

XorPlus# run show bgp routes
Status Codes: * valid route, > best route
Origin Codes: i IGP, e EGP, ? incomplete

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>Peer</th>
<th>AS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 192.168.10.0/24</td>
<td>192.168.20.12.2.2.2</td>
<td>100 ?</td>
<td></td>
</tr>
</tbody>
</table>

XorPlus#

The preceding command output display that the route to destination 192.168.10.0/24 becomes invalid because the nexthop address of this route is unreachable.

(13) Configuring SwitchB to advertise a connected route

XorPlus# set policy policy-statement direct-to-bgp term t1 from protocol connected
[edit]
XorPlus# set policy policy-statement direct-to-bgp term t1 then accept
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bgp export direct-to-bgp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

View the BGP routing table of Switch C:

XorPlus# run show bgp routes
Status Codes: * valid route, > best route
Origin Codes: i IGP, e EGP, ? incomplete

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>Peer</th>
<th>AS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 192.168.10.0/24</td>
<td>192.168.20.12.2.2.2</td>
<td>100 ?</td>
<td></td>
</tr>
<tr>
<td>*> 192.168.20.0/24</td>
<td>192.168.40.1</td>
<td>2.2.2.2</td>
<td></td>
</tr>
<tr>
<td>*> 192.168.30.0/24</td>
<td>192.168.40.1</td>
<td>2.2.2.2</td>
<td></td>
</tr>
</tbody>
</table>

XorPlus#

Then ping 192.168.10.1 on SwitchC:

XorPlus# run ping 192.168.10.1
PING 192.168.10.1 (192.168.10.1) 56(84) bytes of data.
64 bytes from 192.168.10.1: icmp_seq=1 ttl=63 time=4.68 ms
64 bytes from 192.168.10.1: icmp_seq=2 ttl=63 time=4.46 ms
64 bytes from 192.168.10.1: icmp_seq=3 ttl=63 time=5.35 ms
BGP Route Reflector Configuration Example

- The IBGP network should be formed without interrupting full mesh BGP connections between Switch B, Switch C, and Switch D, and call for simplified device configuration and management.

- Configure Switch B, Switch C, and Switch D to have IBGP connections. Between Switch A and Switch B should be an EBGP connection.

- Configure Switch C as a route reflector with clients Switch B and Switch D.

![Diagram of BGP route reflector](image)

Figure 5-10. BGP route reflector.

1. Configuring Switch A

Configure the VLAN that each interface belongs to.

```
XorPlus# set vlans vlan-id 10 13-interface 10 [edit]
XorPlus# set vlans vlan-id 20 13-interface 20 [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10 [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 20 [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
```
Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface 10 vif 10 address 192.168.10.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure an EBGP connection.

XorPlus# set protocols bgp bgp-id 1.1.1.1
[edit]
XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 local-ip 192.168.20.1
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 next-hop-self true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring Switch B

Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 20 13-interface 20
[edit]
XorPlus# set vlans vlan-id 40 13-interface 40
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 40 vif 40 address 192.168.40.1 prefix-length 24
Configure EBGP and IBGP connections.

```plaintext
-config
XorPlus# set policy policy-statement p2 term t1 from protocol bgp
 confusing
XorPlus# set policy policy-statement p2 term t1 from network4 192.168.10.0/24
 confusing
XorPlus# set policy policy-statement p2 term t1 then next-hop4 192.168.40.1
 confusing
XorPlus# commit
 configure
Save done.
-config
XorPlus# set protocols bgp bgp-id 2.2.2.2
 config
XorPlus# set protocols bgp local-as 200
 config
XorPlus# set protocols bgp peer 192.168.20.2 as 100
 config
XorPlus# set protocols bgp peer 192.168.20.1 local-ip 192.168.20.2
 config
XorPlus# set protocols bgp peer 192.168.20.1 next-hop-self true
 config
XorPlus# set protocols bgp peer 192.168.40.2 as 200
 config
XorPlus# set protocols bgp peer 192.168.40.2 local-ip 192.168.40.1
 config
XorPlus# set protocols bgp peer 192.168.40.2 next-hop-self true
 config
XorPlus# set protocols bgp export p2
 config
XorPlus# commit
 configure
Save done.
-config
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 40
 config
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
 config
XorPlus# commit
 configure
Save done.
```

(3) Configuring Switch C
Configure the VLAN that each interface belongs to.

```plaintext
-config
XorPlus# set vlans vlan-id 40 13-interface 40
 config
XorPlus# set vlans vlan-id 50 13-interface 50
 config
XorPlus# commit
 configure
Save done.
-config
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 40
 config
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
 config
XorPlus# commit
 configure
Save done.
```

Configure EBGP and IBGP connections.

```plaintext
XorPlus# set policy policy-statement p2 term t1 from protocol bgp
XorPlus# set policy policy-statement p2 term t1 from network4 192.168.10.0/24
XorPlus# set policy policy-statement p2 term t1 then next-hop4 192.168.40.1
XorPlus# commit
Save done.
```
Configure the VLAN interfaces and assign them IP addresses.

```plaintext
XorPlus# set vlan-interface interface 40 vif 40 address 192.168.40.2 prefix-length 24 [edit]
XorPlus# set vlan-interface interface 50 vif 50 address 192.168.50.2 prefix-length 24 [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

Configure an IBGP connection.

```plaintext
XorPlus# set protocols bgp bgp-id 3.3.3.3 [edit]
XorPlus# set protocols bgp local-as 200 [edit]
XorPlus# set protocols bgp peer 192.168.40.1 as 200 [edit]
XorPlus# set protocols bgp peer 192.168.40.1 local-ip 192.168.40.2 [edit]
XorPlus# set protocols bgp peer 192.168.40.1 next-hop-self true [edit]
XorPlus# set protocols bgp peer 192.168.50.1 as 200 [edit]
XorPlus# set protocols bgp peer 192.168.50.1 local-ip 192.168.50.2 [edit]
XorPlus# set protocols bgp peer 192.168.50.1 next-hop-self true [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

Configure IBGP connections for the route reflector clients.

```plaintext
XorPlus# set protocols bgp route-reflector cluster-id 3.3.3.3 [edit]
XorPlus# set protocols bgp route-reflector disable false [edit]
XorPlus# set protocols bgp peer 192.168.40.1 client true [edit]
XorPlus# set protocols bgp peer 192.168.50.1 client true [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(4) Configuring Switch D
Configure the VLAN that each interface belongs to.

```plaintext
XorPlus# set vlans vlan-id 30 13-interface 30
XorPlus# set vlans vlan-id 50 13-interface 50
```
Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 30 vif 30 address 192.168.30.2 prefix-length 24
XorPlus# set vlan-interface interface 50 vif 50 address 192.168.50.1 prefix-length 24
```

Configure an IBGP connection.

```
XorPlus# set protocols bgp bgp-id 4.4.4.4
XorPlus# set protocols bgp local-as 200
XorPlus# set protocols bgp peer 192.168.30.1 as 200
XorPlus# set protocols bgp peer 192.168.30.1 local-ip 192.168.30.2
XorPlus# set protocols bgp peer 192.168.30.1 next-hop-self true
XorPlus# set protocols bgp peer 192.168.50.2 as 200
XorPlus# set protocols bgp peer 192.168.50.2 local-ip 192.168.50.1
XorPlus# set protocols bgp peer 192.168.50.2 next-hop-self true
XorPlus# commit
```

(5) Verifying configurations

View the BGP routing table of SwitchB:

```
XorPlus# run show bgp routes
Status Codes:  * valid route,  > best route
Origin Codes:  i IGP, e EGP, ? incomplete

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>Peer</th>
<th>AS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*&gt; 192.168.10.0/24</td>
<td>192.168.20.11.1.1.1200</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
```

```
XorPlus#```
View the BGP routing table of Switch D:

```bash
XorPlus# run show bgp routes detail
192.168.10.0/24
From peer: 3.3.3.3
Route: Not Used
Origin: INCOMPLETE
AS Path: 200
Nexthop: 192.168.40.1
Multiple Exit Discriminator: 0
Local Preference: 100
Originator ID: 2.2.2.2
Cluster List: 3.3.3.3
```

### BGP Confederation Configuration Example

- Configure a BGP confederation on each switch in AS 200 to divide AS 200 into two sub-AS's: AS 65010 and AS 65011. To reduce the number of IBGP connections, three switches in AS 65010 establish fullmesh IBGP connections.

- Configure BGP confederation members SwitchA, Switch B, Switch C, and SwitchD. Between SwitchA and SwitchD is an EBGP connection within AS 200.

- Configure SwitchA to connect without AS 200 to SwitchE.

---

(1) **Configuring Switch A**

---

Figure 5-11. BGP confederation configuration.
Configure the VLAN that each interface belongs to.

```
XorPlus# set vlans vlan-id 20 l3
[edit]
XorPlus# set vlans vlan-id 30 l3
[edit]
XorPlus# set vlans vlan-id 40 l3
[edit]
XorPlus# set vlans vlan-id 60 l3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 20
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 40
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/6 family ethernet-switching native-vlan-id 60
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

Configure VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 30 vif 30 address 192.168.30.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 40 vif 40 address 192.168.40.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 60 vif 60 address 192.168.60.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

Configure EBGP and IBGP connections within confederation AS 200.

```
XorPlus# set protocols bgp bgp-id 2.2.2.2
[edit]
XorPlus# set protocols bgp local-as 65010
[edit]
XorPlus# protocols bgp confederation identifier 200
[edit]
XorPlus# protocols bgp confederation disable false
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 as 65010
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 local-ip 192.168.30.1
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 confederation-member true
[edit]
XorPlus# set protocols bgp peer 192.168.40.2 as 65010
```
Configure an EBGP connection without confederation AS 200.

```
XorPlus# set protocols bgp peer 192.168.20.2 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 local-ip 192.168.20.2
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 confederation-member true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus#
```

(2) Configuring Switch B

Configure the VLAN that each interface belongs to.

```
XorPlus# set vlans vlan-id 40 13-interface 40
[edit]
XorPlus# set vlans vlan-id 50 13-interface 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 40
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface 40 vif 40 address 192.168.40.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface 50 vif 50 address 192.168.50.2 prefix-length 24
[edit]
```
Configure an IBGP connection within confederation AS 200.

```plaintext
XorPlus# set protocols bgp bgp-id 3.3.3.3
[edit]
XorPlus# set protocols bgp local-as 65010
[edit]
XorPlus# protocols bgp confederation identifier 200
[edit]
XorPlus# protocols bgp confederation disable false
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 as 65010
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 local-ip 192.168.40.2
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 confederation-member true
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 as 65010
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 local-ip 192.168.50.2
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 confederation-member true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

(3) Configuring Switch C
Configure the VLAN that each interface belongs to.

```plaintext
XorPlus# set vlans vlan-id 30 l3-interface 30
[edit]
XorPlus# set vlans vlan-id 50 l3-interface 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configure the VLAN interfaces and assign them IP addresses.

```plaintext
XorPlus# set vlan-interface interface 30 vif 40 address 192.168.30.2 prefix-length 24
```
Configure an IBGP connection within confederation AS 200.

XorPlus# set protocols bgp bgp-id 4.4.4.4
[edit]
XorPlus# set protocols bgp local-as 65010
[edit]
XorPlus# protocols bgp confederation identifier 200
[edit]
XorPlus# protocols bgp confederation disable false
[edit]
XorPlus# set protocols bgp peer 192.168.30.1 as 65010
[edit]
XorPlus# set protocols bgp peer 192.168.30.1 local-ip 192.168.30.2
[edit]
XorPlus# set protocols bgp peer 192.168.30.1 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.30.1 confederation-member true
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 as 65010
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 local-ip 192.168.50.1
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 next-hop-self true
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 confederation-member true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(4) Configuring Switch D
Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 60 interface 60
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/6 family ethernet-switching native-vlan-id 60
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface 60 vif 60 address 192.168.60.2 prefix-length 24
[edit]
Configure an EBGP connection within confederation AS 200.

XorPlus# set protocols bgp bgp-id 5.5.5.5
XorPlus# set protocols bgp local-as 65011
XorPlus# protocols bgp confederation identifier 200
XorPlus# protocols bgp confederation disable false
XorPlus# set protocols bgp peer 192.168.60.2 as 65010
XorPlus# set protocols bgp peer 192.168.60.2 local-ip 192.168.60.1
XorPlus# set protocols bgp peer 192.168.60.2 next-hop-self true
XorPlus# set protocols bgp peer 192.168.60.2 confederation-member true
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

(5) Configuring Switch E
Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 10 l3-interface 10
XorPlus# set vlans vlan-id 20 l3-interface 20
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 20
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface 10 vif 10 address 192.168.10.1 prefix-length 24
XorPlus# set vlan-interface interface 20 vif 20 address 192.168.20.1 prefix-length 24
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
Configure an EBGP connection.

```plaintext
XorPlus# set protocols bgp bgp-id 1.1.1.1
[edit]
XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 local-ip 192.168.20.1
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 next-hop-self true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(6) Verifying the configuration

View the BGP routing table of Switch B:

```plaintext
XorPlus# run show bgp routes detail
192.168.10.0/24
 From peer: 2.2.2.2
 Route: Not Used
 Origin: INCOMPLETE
 AS Path: 100
 Nexthop: 192.168.20.1
 Multiple Exit Discriminator: 0
 Local Preference: 100
```

View the BGP routing table of Switch D:

```plaintext
XorPlus# run show bgp routes detail
192.168.10.0/24
 From peer: 15.15.15.15
 Route: Not Used
 Origin: INCOMPLETE
 AS Path: (65010) 100
 Nexthop: 192.168.30.2
 Local Preference: 100
```

**BGP Load Balancing Configuration Example**

- Configure load balancing on SwitchA.
- Configure EBGP connections between SwitchB and SwitchA, and between SwitchB and SwitchD.
- Configure EBGP connections between SwitchC and SwitchA, and between SwitchC and SwitchD.
(1) **Configuring Switch A**

Configure the VLAN that each interface belongs to.

```plaintext
XorPlus# set vlans vlan-id 30 13-interface vlan30
[edit]
XorPlus# set vlans vlan-id 40 13-interface vlan40
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 40
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configure the VLAN interfaces and assign them IP addresses.

```plaintext
XorPlus# set vlan-interface interface vlan30 vif vlan30 address 192.168.30.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan40 vif vlan40 address 192.168.40.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configure an EBGP connection.

```plaintext
XorPlus# set protocols bgp bgp-id 1.1.1.1
[edit]
```
XorPlus# set protocols bgp local-as 100
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 local-ip 192.168.30.1
[edit]
XorPlus# set protocols bgp peer 192.168.40.2 as 300
[edit]
XorPlus# set protocols bgp peer 192.168.40.2 local-ip 192.168.30.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring Switch B
Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 20 l3-interface vlan20
[edit]
XorPlus# set vlans vlan-id 30 l3-interface vlan30
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 30
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 20
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface vlan20 vif vlan20 address 192.168.20.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan30 vif vlan30 address 192.168.30.2 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure an EBGP connection.

XorPlus# set protocols bgp bgp-id 2.2.2.2
[edit]
XorPlus# set protocols bgp local-as 200
[edit]
XorPlus# set protocols bgp peer 192.168.20.1 as 400
[edit]
XorPlus# set protocols bgp peer 192.168.20.1 local-ip 192.168.20.2
[edit]
XorPlus# set protocols bgp peer 192.168.30.1 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.30.2 local-ip 192.168.30.2
(3) Configuring Switch C

Configure the VLAN that each interface belongs to.

```
[edit]
XorPlus# set vlans vlan id 40 13-interface 40
[edit]
XorPlus# set vlans vlan id 50 13-interface 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 40
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configure the VLAN interfaces and assign them IP addresses.

```
XorPlus# set vlan-interface interface vlan40 vif vlan40 address 192.168.40.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan50 vif vlan50 address 192.168.50.2 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Configure an EBGP connection.

```
XorPlus# set protocols bgp bgp-id 3.3.3.3
[edit]
XorPlus# set protocols bgp local-as 300
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 as 100
[edit]
XorPlus# set protocols bgp peer 192.168.40.1 local-ip 192.168.40.2
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 as 400
[edit]
XorPlus# set protocols bgp peer 192.168.50.1 local-ip 192.168.50.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#```
(4) Configuring Switch D

Configure the VLAN that each interface belongs to.

XorPlus# set vlans vlan-id 10 13-interface vlan10
[edit]
XorPlus# set vlans vlan-id 20 13-interface vlan20
[edit]
XorPlus# set vlans vlan-id 50 13-interface vlan50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 10
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 20
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 50
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure the VLAN interfaces and assign them IP addresses.

XorPlus# set vlan-interface interface vlan10 vif vlan10 address 192.168.10.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan20 vif vlan20 address 192.168.20.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan50 vif vlan50 address 192.168.50.1 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

Configure an EBGP connection.

XorPlus# set protocols bgp bgp-id 4.4.4.4
[edit]
XorPlus# set protocols bgp local-as 400
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 as 200
[edit]
XorPlus# set protocols bgp peer 192.168.20.2 local-ip 192.168.20.1
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 as 300
[edit]
XorPlus# set protocols bgp peer 192.168.50.2 local-ip 192.168.50.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(5) Viewing BGP peer statuses on Switch B
XorPlus# run show bgp peers detail
Peer 2: local 192.168.20.2/179 remote 192.168.20.1/39912
 Peer ID: 1.1.1.1
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds
 Hold Time: 90 seconds, Keep Alive Time: 30 seconds
 Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
 Minimum AS Origination Interval: 0 seconds
 Minimum Route Advertisement Interval: 0 seconds

Peer 2: local 192.168.30.2/16808 remote 192.168.30.1/179
 Peer ID: 4.4.4.4
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds
 Hold Time: 90 seconds, Keep Alive Time: 30 seconds
 Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
 Minimum AS Origination Interval: 0 seconds
 Minimum Route Advertisement Interval: 0 seconds

Peer 2: local 192.168.40.2/179 remote 192.168.40.1/38815
 Peer ID: 1.1.1.1
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds
 Hold Time: 90 seconds, Keep Alive Time: 30 seconds
 Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
 Minimum AS Origination Interval: 0 seconds
 Minimum Route Advertisement Interval: 0 seconds

Peer 2: local 192.168.50.2/49923 remote 192.168.50.1/179
 Peer ID: 4.4.4.4
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds

(6) Viewing BGP peer statuses on Switch C

XorPlus# run show bgp peers detail
Peer 2: local 192.168.40.2/179 remote 192.168.40.1/38815
 Peer ID: 1.1.1.1
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds
 Hold Time: 90 seconds, Keep Alive Time: 30 seconds
 Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
 Minimum AS Origination Interval: 0 seconds
 Minimum Route Advertisement Interval: 0 seconds

Peer 2: local 192.168.50.2/49923 remote 192.168.50.1/179
 Peer ID: 4.4.4.4
 Peer State: ESTABLISHED
 Admin State: START
 Negotiated BGP Version: 4
 Peer AS Number: 100
 Updates Received: 20, Updates Sent: 2
 Messages Received: 634, Messages Sent: 611
 Time since last received update: 1685 seconds
 Number of transitions to ESTABLISHED: 1
 Time since last entering ESTABLISHED state: 15995 seconds
 Retry Interval: 120 seconds
Hold Time: 90 seconds, Keep Alive Time: 30 seconds
Configured Hold Time: 90 seconds, Configured Keep Alive Time: 30 seconds
Minimum AS Origination Interval: 0 seconds
Minimum Route Advertisement Interval: 0 seconds

(7) Configuring SwitchD to advertise route 192.168.10.0/24
Configure SwitchA to enable BGP multipath:

```
XorPlus# set protocols bgp multipath disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

Configure SwitchD to advertise route 192.168.10.0/24:

```
XorPlus# set policy policy-statement direct-to-bgp term t1 from protocol connected
[edit]
XorPlus# set policy policy-statement direct-to-bgp term t1 from network4 192.168.10.0/24
[edit]
XorPlus# set policy policy-statement direct-to-bgp term t1 then accept
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols bgp export direct-to-bgp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

View the BGP routing table of Switch A:

```
XorPlus# run show bgp routes
Status Codes:  * valid route,  > best route
Origin Codes: i IGP, e EGP, ? incomplete

 Prefix               NextHop        Peer         AS Path
------               -------        ------        -------
 *> 192.168.10.0/24   192.168.30.2   2.2.2.2       200 400 ?
 *  192.168.10.0/24   192.168.40.2   3.3.3.3       200 400 ?
XorPlus#
```

As expected, SwitchA is not load balancing because it does not view the paths as "equal," but as different AS paths.

(8) Configuring BGP multipath path-relax on Switch A

```
XorPlus# set protocols bgp multipath path-relax true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```
View the BGP routing table and IP routing table of SwitchA:

XorPlus# run show bgp routes
Status Codes: * valid route, > best route
Origin Codes: i IGP, e EGP, ? incomplete

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>Peer</th>
<th>AS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 192.168.10.0/24</td>
<td>192.168.30.2</td>
<td>2.2.2.2</td>
<td>200 400 ?</td>
</tr>
<tr>
<td>*> 192.168.10.0/24</td>
<td>192.168.40.2</td>
<td>3.3.3.3</td>
<td>200 400 ?</td>
</tr>
</tbody>
</table>

XorPlus# run show route table ipv4 unicast ebgp
192.168.10.0/24 [ebgp(20)/0]
> to 192.168.30.2 via vlan30/vlan30
192.168.10.0/24 [ebgp(20)/0]
> to 192.168.40.2 via vlan40/vlan40

Configuring ECMP (Equal-CostMultipathRouting)

- In L2/L3, ECMP is supported. The maximum ECMP outgoing port group is 4*128. If you configure each ECMP route to have up to 4 equal-cost paths, for example, then the maximum ECMP outgoing port group support is 128. If you configure each ECMP route to have up to 16 equal-cost paths, the maximum ECMP outgoing port group support is 32. Several different ECMP routes can share the same outgoing port group.

- After configuring the ECMP equal-cost path maximum, save the configuration file and reboot the switch to make it available.

(1) Configuring the equal-cost path maximum

XorPlus# set interface ecmp_path_max 8
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
ECMP max path changes, please save running-config to startup and reset the box!
[edit]
XorPlus# save running-to-startup
Save done.
[edit]
XorPlus# run request system reboot
The system is going down NOW!
Sending SIGTERM to all processes
Sending SIGKILL to all processes
Requesting system reboot
Restarting system.
rstcr compatible register does not exist!
uses the mpc8541’s gpio to do a reset.
U-Boot 1.3.0 (Sep 8 2010 - 17:20:00)
CPU: 8541, Version: 1.1, (0x80720001)
Core: E500, Version: 2.0, (0x80200020)
Clock Configuration:
 CPU: 825 MHz, CCB: 330 MHz,
 DDR: 165 MHz, LBC: 41 MHz
L1: D-cache 32 kB enabled
 I-cache 32 kB enabled
I2C: ready
DRAM: Initializing

(2) Configuring static ECMP routing

XorPlus# set vlans vlan-id 2
[edit]
XorPlus# set vlans vlan-id 3
[edit]
XorPlus# set vlans vlan-id 4
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/5 family ethernet-switching native-vlan-id 4
[edit]
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlans vlan-id 4 l3-interface vlan-4
[edit]
XorPlus# set vlan-interface interface vlan-2 address 10.10.60.10 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-3 address 10.10.61.10 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan-4 address 10.10.62.10 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 10.10.51.0/24 next-hop 10.10.61.20
[edit]
XorPlus# set protocols static route 10.10.51.0/24 qualified-next-hop 10.10.62.20 metric 1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface ecmp hash-mapping field ingress-interface disable false
[edit]
XorPlus# set interface ecmp hash-mapping field ip-destination disable false

You can check the static ECMP route for 10.10.51.0/24 in the RIB.

XorPlus# run show route table ipv4 unicast final
10.10.51.0/24 [static(1)/1]
 > to 10.10.61.20 via vlan-3/vlan-3
10.10.51.0/24 [static(1)/1]
 > to 10.10.62.20 via vlan-4/vlan-4
10.10.60.0/24 [connected(0)/0]
 > via vlan-2/vlan-2
10.10.61.0/24 [connected(0)/0]
 > via vlan-3/vlan-3
10.10.62.0/24 [connected(0)/0]
 > via vlan-4/vlan-4

(3) Configuring ECMP hash fields

In the default setting, all fields are hashed by “ip-source,” “port-destination,” “port-source,” and “vlan.” You can enable additional fields as shown below:

XorPlus# set interface ecmp hash-mapping field ingress-interface disable false
[edit]
XorPlus# set interface ecmp hash-mapping field ip-destination disable false
Configuring VRRP (Virtual Router Redundancy Protocol)

In L2/L3, VRRP is supported, for both preempt and non-preempt parameters.

(1) Configuring VRRP

In the configuration below, a virtual router with IP 192.168.1.5/24 has been created. You can configure VRRP preemption and the VRRP priority.

```
XorPlus# set vlans vlan-id 2
XorPlus# set vlans vlan-id 3
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 2
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 3
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
XorPlus# set vlan-interface interface vlan-2vif vlan-2 address 192.168.1.1 prefix-length 24
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 192.168.2.1 prefix-length 24
```

You can check the VRRP configuration.

```
XorPlus# run show vrrp vlan-2
```
IPv6 Neighbor Configuration

(1) Configuring the IPv6 neighbor aging time
You can configure the IPv6 neighbor aging time. The neighbor will be removed after the timer has expired.

XorPlus# set protocols neighbour aging-time 480
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Configuring a static IPv6 neighbor
You can configure a static IPv6 neighbor in a specified interface.

XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show ipv6-neighbors static
aging-time(seconds): 480

table:

<table>
<thead>
<tr>
<th>Address</th>
<th>HW Address</th>
<th>Interface</th>
</tr>
</thead>
</table>

XorPlus#

(3) Configuring IPv6 routeradvertisement
You can manually enable routeradvertisement messages.

XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlan-interface interface vlan1 router-advertisement disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

IPv6 Static Routing Configuration

- In L2/L3, IPv6 static routing is supported. The IPv6 for OSPFv3 and RIPng will be supported soon.

- In P-3290 and P-3780, you should configure the link-local IPv6 address, otherwise all the IPv6 interfaces will share the same link-local address. This problem will be fixed in a future version.
(1) Configuring a static route for IPv6
You can configure the link-local address and global address for a VLAN interface.

```
XorPlus# set vlans vlan-id 2
    [edit]
XorPlus# set vlans vlan-id 3
    [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 family ethernet-switching native-vlan-id 2
    [edit]
XorPlus# set interface gigabit-ethernet ge-1/1/4 family ethernet-switching native-vlan-id 3
    [edit]
XorPlus# set vlans vlan-id 2 13-interface vlan-2
    [edit]
XorPlus# set vlans vlan-id 3 13-interface vlan-3
    [edit]
XorPlus# set vlan-interface interface vlan-2vif vlan-2 address 2001:db8:3c4d:5:60:ff:73:87 prefix-length 64
    [edit]
XorPlus# set vlan-interface interface vlan-2vif vlan-2 address fe80::ca0a:a9ff:fe04:4931 prefix-length 64
    [edit]
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 2001:db8:3c4d:6:0:ff:73:87 prefix-length 64
    [edit]
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address fe80::ca0a:a9ff:4:4932 prefix-length 64
    [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 2001:db8:3c4d:7::/64 next-hop 2001:db8:3c4d:5:60:ff:73:89 prefix-length 64
    [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

Then verify the IPv6 static route in the RIB:

```
XorPlus# run show route table ipv6 unicast final
2001:db8:3c4d:5::/64[connected(0)/0]
> via vlan-2/vlan-2
2001:db8:3c4d:6::/64[connected(0)/0]
> via vlan-3/vlan-3
fe80::/64 [connected(0)/0]
> via vlan-3/vlan-3
fe80::/64 [connected(0)/0]
> via vlan-2/vlan-2
```

OSPFv3 Routing Protocol Configuration
In XorPlus, OSPFv3 is supported.

(1) Configuring the router ID

```
XorPlus# set protocols ospf6 instance-id 1
    [edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
```
(2) Configuring an OSPF area and area-type
Area 0.0.0.0 is the backbone area of OSPF; each OSPF domain should have the area 0.0.0.0. Area types include normal, stub, and NSSA.

```
XorPlus# set protocols ospf6 area 0.0.0.0 area-type normal
[edit]
XorPlus# set protocols ospf6 area 1.1.1.1 area-type stub
[edit]
XorPlus# set protocols ospf6 area 2.2.2.2 area-type nssa
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(3) Configuring OSPF interfaces

```
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
[edit]
XorPlus# set vlan-interface interface vlan-2 vif vlan-2 address 2001::15 prefix-length 64
[edit]
XorPlus# set vlan-interface interface vlan-3 vif vlan-3 address 2002::15 prefix-length 64
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set protocols ospf6 area 0.0.0.0 interface vlan-2 vif vlan-2 address 2001::15
[edit]
XorPlus# set protocols ospf6 area 0.0.0.0 interface vlan-3 vif vlan-3 address 2002::15
[edit]
XorPlus# set protocols ospf6 instance-id 1
[edit]
XorPlus# set protocols ospf6 router-id 1.1.1.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(4) Configuring additional OSPF interface parameters
You can also configure additional OSPF interface parameters (hello-interval, interface-cost, static neighbor, priority, retransmit-interval, router-dead-interval, and transmit-delay).

```
XorPlus# set protocols ospf6 area 0.0.0.0 interface vlan-2 vif vlan-2 hello-interval 10
[edit]
XorPlus# set protocols ospf6 area 0.0.0.0 interface vlan-2 vif vlan-2 interface-cost 8
[edit]
XorPlus# set protocols ospf6 area 0.0.0.0 interface vlan-2 vif vlan-2 transmit-delay 2
[edit]
XorPlus# commit
```

```
XorPlus# run show ospf6 interface
<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-2</td>
<td>Down</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>vlan-3</td>
<td>Down</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

ACL and Filter Configuration

- In L2/L3, ACLs support destination-address-ipv4, destination-address-ipv6, destination-mac-address, destination-port, ether-type, ip, protocol, source-address-ipv4, source-address-ipv6, source-mac-address, source-port, and vlan-id.

- TCP flags are also supported. These ACLs can be applied to physical ports, LAG ports, and VLAN interfaces. One ACL can be applied to multiple ports (the properties of the ports can be same or different), but only one port can be matched to one ACL.

1) Configuring ACLs

```bash
XorPlus# set firewall filter bad-net sequence bad-1 from source-address-ipv4 1.1.1.0/24
[edit]
XorPlus# set firewall filter bad-net sequence bad-1 then action discard
[edit]
XorPlus# set firewall filter bad-net sequence bad-2 from source-address-ipv4 1.1.2.0/24
[edit]
XorPlus# set firewall filter bad-net sequence bad-2 then action discard
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net input interface ge-1/1/1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net input interface ae1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

When the switch receives a packet in ingress and egress, it will attempt to match ACLs by sequence number, with smaller values representing higher priorities. If the matched ACL’s action is “forward” or “discard,” the switch will forward or discard the packet and will not match the remaining ACLs. If there is no matching ACL, the packet will be dropped.

2) Configuring ACLs in VLANs

Every member port in the VLAN interface will be applied with the ACLs configured in the VLAN interface.

```bash
XorPlus# set firewall filter bad-net sequence bad-1 from source-address-ipv4 1.1.1.0/24
[edit]
XorPlus# set firewall filter bad-net sequence bad-1 then action discard
[edit]
XorPlus# set firewall filter bad-net sequence bad-2 from source-address-ipv4 1.1.2.0/24
```

When the switch receives a packet in ingress and egress, it will attempt to match ACLs by sequence number, with smaller values representing higher priorities. If the matched ACL’s action is “forward” or “discard,” the switch will forward or discard the packet and will not match the remaining ACLs. If there is no matching ACL, the packet will be dropped.
[edit]
XorPlus# set firewall filter bad-net sequence bad-2 then action discard
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net input vlan-interface vlan-2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Configuring ACL discard TCP ACK
You can configure ACL TCP flags (ACK/FIN/RST/SYN/URG/TCP-ESTABLISHED/TCP-INITIAL) to specify what action (forward/discard) to perform on which packets (true/false).

XorPlus# set firewall filter bad-net sequence bad-1 then action discard
[edit]
XorPlus# set firewall filter bad-net sequence bad-1 from protocol tcp flags ack true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net output interface ge-1/1/1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net input interface ge-1/1/1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set firewall filter bad-net sequence bad-1 log interval 10
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

(4) Configuring ACL logging for match statistics
XorPlus#
XorPlus# run syslog monitor on
XorPlus#
Chapter 6. Multicast Configuration

This chapter describes IGMP, PIM-SM, and IGMP Snooping configurations.

IGMP Snooping Configuration

In L2/L3, IGMPv2 Snooping and IGMPv2 Snooping Querier are both supported.

1. **IGMP snooping basic configuration**

 In the default setting, the switch disables IGMP snooping. You should globally enable IGMP per VLAN.

   ```
   XorPlus# set protocols igmp-snooping enable true
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 enable true
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 mrouter interface ge-1/1/3
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 querier other-querier-timer 1
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 static group 238.255.0.1 interface ge-1/1/2
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus# run show igmp-snooping vlan 1
   Vlan 1:
   ---------------------------------------------------------------
   IGMP snooping            : Enabled
   IGMPv2 fast leave        : Disabled
   IGMP querier state      : Disabled
   IGMP querier source ip address : 0.0.0.0
   IGMP other querier timer : 1
   IGMP querier version     : 2
   XorPlus#
   ```

2. **IGMP snooping querier**

 For multicast traffic in Layer2, enable an IGMP snooping querier in the VLAN.

   ```
   XorPlus# set protocols igmp-snooping vlan-id 1 querier enable true
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 querier address 10.10.1.1
   [edit]
   XorPlus# set protocols igmp-snooping vlan-id 1 querier version 2
   [edit]
   XorPlus# commit
   Waiting for merging configuration.
   Commit OK.
   Save done.
   [edit]
   XorPlus#
   XorPlus# run show igmp-snooping querier
   Vlan   IP Address    IGMP Version
   ------ -------------- -----------
   1      10.10.1.1     v2
   XorPlus#
   ```
IGMP Configuration

In XorPlus, IGMPv1/v2/v3 is supported.

(1) **Configuring an IGMP interface**

Enable the multicast interface before enabling the IGMP interface.

```
XorPlus# set vlans vlan-id 2 13-interface vlan2
[edit]
XorPlus# set vlans vlan-id 3 13-interface vlan3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlan-interface interface vlan2 vif vlan2 address 10.10.60.10 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan3 vif vlan3 address 10.10.61.10 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set multicast-interface interface vlan2 vif vlan2 disable false
[edit]
XorPlus# set multicast-interface interface vlan3 vif vlan2 disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols igmp interface vlan2 vif vlan2
[edit]
XorPlus# set protocols igmp interface vlan3 vif vlan3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show igmp interface
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Querier</th>
<th>Timeout</th>
<th>Version</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>UP</td>
<td>10.10.60.10</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>vlan3</td>
<td>UP</td>
<td>10.10.61.10</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(2) **Configuring IGMP parameters for the IGMP interface**

```
XorPlus# set protocols igmp interface vlan2 vif vlan2query-interval 4
[edit]
XorPlus# set protocols igmp interface vlan2 vif vlan2query-last-member-interval 3
[edit]
XorPlus# set protocols igmp interface vlan2 vif vlan2query-response-interval 100
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# ```
(3) Configuring an IGMPv3 interface
You can configure IGMPv3 in a specified interface.

```
XorPlus# set protocols igmp interface vlan3 vif vlan3 version 3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
XorPlus# run show igmp interface
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Querier</th>
<th>Timeout</th>
<th>Version</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>UP</td>
<td>10.10.60.10</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>vlan3</td>
<td>UP</td>
<td>10.10.61.10</td>
<td>None</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

(4) Joining and leaving a group; displaying group information
If you send an IGMPv2 report to VLAN 2, and an IGMPv3 report to VLAN 3, for example, you can display the group information of the switch. You should not have to worry about 224.0.0.2, 224.0.0.22, etc., which are used for the system (e.g. OSPF, RIP).

```
XorPlus# run show igmp group
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Group</th>
<th>Source</th>
<th>LastReported</th>
<th>Timeout</th>
<th>V</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>224.0.0.2</td>
<td>0.0.0.0</td>
<td>10.10.60.10</td>
<td>92</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>vlan2</td>
<td>224.0.0.22</td>
<td>0.0.0.0</td>
<td>10.10.60.10</td>
<td>101</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>vlan3</td>
<td>238.255.0.1</td>
<td>0.0.0.0</td>
<td>10.10.60.100</td>
<td>61</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>vlan3</td>
<td>224.0.0.2</td>
<td>0.0.0.0</td>
<td>10.10.61.10</td>
<td>205</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>vlan3</td>
<td>238.255.0.2</td>
<td>0.0.0.0</td>
<td>10.10.61.100</td>
<td>0</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>vlan3</td>
<td>238.255.0.2</td>
<td>20.20.20.20</td>
<td>10.10.61.100</td>
<td>257</td>
<td>3</td>
<td>F</td>
</tr>
</tbody>
</table>

If you send a leaving message for the above group, the specified group will be removed.

```
XorPlus# run show igmp group
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Group</th>
<th>Source</th>
<th>LastReported</th>
<th>Timeout</th>
<th>V</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan2</td>
<td>224.0.0.2</td>
<td>0.0.0.0</td>
<td>10.10.60.10</td>
<td>88</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>vlan2</td>
<td>224.0.0.22</td>
<td>0.0.0.0</td>
<td>10.10.60.10</td>
<td>105</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>vlan3</td>
<td>224.0.0.2</td>
<td>0.0.0.0</td>
<td>10.10.61.10</td>
<td>227</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>vlan3</td>
<td>224.0.0.22</td>
<td>0.0.0.0</td>
<td>10.10.61.10</td>
<td>227</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>

PIM-SM Configuration
In L2/L3, PIM-SM is supported.

(1) PIM-SM basic configuration
● Before configuring a PIM-SM interface, you should enable a multicast interface.

● You can then configure a candidate-RP and a candidate-BSR. For configuring the candidate-BSR, “scope-zone” denotes the zone of the multicast group, which is included in the multicast domain.

```
XorPlus# set vlans vlan-id 2 l3-interface vlan2
[edit]
XorPlus# set vlans vlan-id 3 l3-interface vlan3
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
[edit]
XorPlus# set vlan-interface interface vlan-2vif vlan-2address 10.10.60.10 prefix-length 24
[edit]
```
XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 10.10.61.10 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set multicast-interface interface vlan-2vif vlan-2 disable false
[edit]
XorPlus# set multicast-interface interface vlan-3vif vlan-3 disable false
[edit]
XorPlus# set multicast-interface interface register_vif disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols igmp interface vlan-3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols pimsm4 interface vlan-2vif vlan-2 disable false
[edit]
XorPlus# set protocols pimsm4 interface vlan-3vif vlan-3 disable false
[edit]
XorPlus# set protocols pimsm4 interface register_vif disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols pimsm4 bootstrap cand-bsr scope-zone 224.0.0.0/4 cand-bsr-by-vif-name vlan-3
[edit]
XorPlus# set protocols pimsm4 bootstrap cand-rp group-prefix 237.0.0.0/8 cand-rp-by-vif-name vlan-2
[edit]
XorPlus# set protocols pimsm4 bootstrap cand-rp group-prefix 231.0.0.0/8 cand-rp-by-vif-name vlan-3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(2) Static RP configuration
You can also configure static RP instead of BSR or dynamic RP.

XorPlus# set protocols pimsm4 static-rps rp 10.10.60.10 group-prefix 238.0.0.0/8 rp-priority 10
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
**PIM-SM Configuration Example**

- In the following topology, Switch B is the C-BSR and C-RP. Host A is a receiver for multicast traffic, and HostB is a multicast source that will send the multicast traffic.

- You'll need to configure ge-1/1/2 as an IGMP interface in switchA for HostA.

- In this example, the static route in the RIB will be used by PIM-SM.

![Diagram of multicast routing configuration](image)

**Figure 6-1. PIM-SM multicast routing configuration.**

1. **Configuring Switch A**

   For switchA, configure ge-1/1/2 as an IGMP interface, and ge-1/1/1 as a PIM-SM interface.

   ```
 XorPlus# set vlans vlan-id 2 l3-interface vlan-2
 [edit]
 XorPlus# set vlans vlan-id 3 l3-interface vlan-3
 [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
 [edit]
 XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
 [edit]
 XorPlus# set vlan-interface interface vlan-2vif vlan-2 address 10.10.1.1 prefix-length 24
 [edit]
 XorPlus# set vlan-interface interface vlan-3vif vlan-3 address 10.10.3.1 prefix-length 24
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
 [edit]
 XorPlus# set multicast-interface interface vlan-2vif vlan-2 disable false
 [edit]
 XorPlus# set multicast-interface interface vlan-3vif vlan-3 disable false
 [edit]
 XorPlus# set multicast-interface interface register_vif disable false
 [edit]
 XorPlus# set protocols igmp interface vlan-3
 [edit]
 XorPlus# commit
 Waiting for merging configuration.
 Commit OK.
 Save done.
   ```
(2) Configuring SwitchB
Configure 2 PIM-SM interfaces, ge-1/1/1 and ge-1/1/2. You will also need to configure a candidate BSR and a candidate RP.
(3) **Configuring Switch C**

Configure 2 PIM-SM interfaces, ge-1/1/1 and ge-1/1/2. You will also need to configure a candidate BSR and a candidate RP.

```plaintext
XorPlus# set vlans vlan-id 2 l3-interface vlan-2
XorPlus# set vlans vlan-id 3 l3-interface vlan-3
XorPlus# set interface gigabit-ethernet ge-1/1/1 family ethernet-switching native-vlan-id 2
XorPlus# set interface gigabit-ethernet ge-1/1/2 family ethernet-switching native-vlan-id 3
XorPlus# set vlans vlan-2vif vlan-2 address 10.10.2.1 prefix-length 24
XorPlus# set vlans vlan-3vif vlan-3 address 10.10.4.1 prefix-length 24
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

```
[edit]
XorPlus# set protocols pimsm4 interface vlan-3vif vlan-3 disable false
[edit]
XorPlus# set protocols pimsm4 interface register_vif disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

```
[edit]
XorPlus# set protocols pimsm4 bootstrap cand-bsr scope-zone 224.0.0.0/4 cand-bsr-by-vif-name vlan-3
[edit]
XorPlus# set protocols pimsm4 bootstrap cand-rp group-prefix 238.0.0.0/8 cand-rp-by-vif-name vlan-2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

```
[edit]
XorPlus# set multicast interface interface vlan-2vif vlan-2 disable false
[edit]
XorPlus# set multicast interface interface vlan-3vif vlan-3 disable false
```
[edit]
XorPlus# set multicast-interface interface register_vif disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols pimsm4 interface vlan-2 vif vlan-2 disable false
[edit]
XorPlus# set protocols pimsm4 interface vlan-3 vif vlan-3 disable false
[edit]
XorPlus# set protocols pimsm4 interface register_vif disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set protocols static route 10.10.1.0/24 next-hop 10.10.2.2
[edit]
XorPlus# set protocols static route 10.10.3.0/24 next-hop 10.10.2.2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show pim interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Mode</th>
<th>V</th>
<th>PIMstate</th>
<th>Priority</th>
<th>DRaddr</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-2</td>
<td>UP</td>
<td>Sparse</td>
<td>2</td>
<td>DR</td>
<td>1</td>
<td>10.10.2.1</td>
<td>0</td>
</tr>
<tr>
<td>vlan-3</td>
<td>UP</td>
<td>Sparse</td>
<td>2</td>
<td>DR</td>
<td>1</td>
<td>10.10.4.1</td>
<td>0</td>
</tr>
<tr>
<td>register_vif</td>
<td>UP</td>
<td>Sparse</td>
<td>2</td>
<td>DR</td>
<td>1</td>
<td>10.10.2.1</td>
<td>0</td>
</tr>
</tbody>
</table>

XorPlus#
Chapter 7. QoS Configuration

This chapter describes Layer2 and Layer3 QoS configurations.

Configuring QoS

- In L2/L3, 802.1p, DSCP, and COS QoS are supported.
- You should first create forwarding classes, which determine the queue number of the specified traffic type.
- Define your QoS classifiers (by specifying the associated forwarding class) and include the trust-mode. Map the code-point in the forwarding class.
- Finally, apply each classifier to its specified ports.

1. Configuring priority queuing

```
XorPlus# set class-of-service forwarding-class best-effort local-priority 3
[edit]
XorPlus# set class-of-service forwarding-class rt-traffic local-priority 0
[edit]
XorPlus# set class-of-service forwarding-class normal-traffic local-priority 2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

2. Configuring classifiers with IEEE 802.1/DSCP/COSQoS

```
XorPlus# set class-of-service classifier c1 trust-mode ieee-802.1
[edit]
XorPlus# set class-of-service classifier c1 forwarding-class best-effort code-point 3
[edit]
XorPlus# set class-of-service classifier c2 trust-mode dscp
[edit]
XorPlus# set class-of-service classifier c2 forwarding-class rt-traffic code-point 10
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

3. Applying classifiers to specified ports

```
XorPlus# set class-of-service interface ge-1/1/1 classifier c1
[edit]
XorPlus# set class-of-service interface ge-1/1/2 classifier c2
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```
Chapter 8. OpenFlow Configuration

This chapter describes the configuration of OpenFlow. Since PicOS2.0, the switch can mix data traffic between the OpenFlow and L2/L3 networks. We call this enhancement “crossflow” mode.

OpenFlow Introduction

- In L2/L3, OpenFlow v1.0, OFv1.1, OFv1.2, and OFv1.3 are all supported. You can configure any supported version in the CLI.

- All ports in the switch are either legacy or crossflow ports. In a crossflow port, you can enable or disable local control, regarding local processing of protocol packets.

- You can configure specified ports in crossflow mode, and enable/disable the local control in a crossflow port. If you enable local control in a crossflow port, the protocol packet (containing the BPDU, LLDP, and OSPF PDU) will be processed in the local protocol stack. In the mean time, the MAC learning and flood domain will also be enabled in this crossflow port. Without local control, the protocol packet, MAC learning, and flood domain will not be enabled in crossflow mode.

- Crossflow port modes can be summarized as follows:

  TCAM mode and local-control-off:
  The port is totally controlled by controller
  All broadcast turned off & auto learning turned off
  Packet forwarded by looking up the TCAM

  TCAM mode and local-control-on:
  The port is controlled by local protocol stack engine
  All broadcast turned on & auto learning turned on
  User or controller can add flows in the TCAM to control traffic
Figure 8-1. TCAM mode crossflow ports.

- In TCAM mode, traffic can be forwarded between the OpenFlow domain and the Legacy network domain (e.g., you can send traffic from a crossflow port to a legacy port, as shown in the following figures).
Figure 8-3. TCAM mode traffic between crossflow ports.

TCAM | FDB & Route Table

Openflow Domain

Traffic

Legacy network Domain

Traffic

Traffic
OpenFlow Basic Configuration

You can enable OpenFlow and configure a specified port as a crossflow port.

1. Allocating resources to OpenFlow

The OpenFlow module needs resources in the ASIC to install flows. For example, you can allocate a specified TCAM entry and L3 routing table entry for OpenFlow, as shown below. Allocate the resources before enabling OpenFlow, or the configuration will not be successful.

```
XorPlus# set interface max-acl-rule-limit ingress 400
[edit]
XorPlus# set interface max-route-limit 6000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
```

2. Enabling OpenFlow TCAM mode

```
XorPlus# set open-flow
[edit]
XorPlus# commit
device ovs-pica8 entered promiscuous mode
device br0 entered promiscuous mode
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set open-flow working-mode tcam-mode
[edit]
XorPlus# commit
Commit OK.
Save done.
[edit]
```

3. Configuring a specified port as a crossflow port

With OpenFlow globally enabled, you can configure a specified port as a crossflow port. You can then manually disable local-control, which is enabled in the default setting.

```
XorPlus# set interface gigabit-ethernet ge-1/1/1 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 crossflow local-control false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface aggregate-ethernet ael crossflow enable true
[edit]
XorPlus# set interface aggregate-ethernet ael crossflow local-control false
[edit]
XorPlus# commit
Merging the configuration.
```

© 2013 Pica8 Inc. All Rights Reserved.
(4) Configuring your switch’s OpenFlow version

By default, the switch enables OpenFlow v1.2, and also supports OpenFlow v1.0, OpenFlow v1.1, and OpenFlow v1.3. Your switch can negotiate with the controller and these four OpenFlow versions.

```plaintext
XorPlus# set open-flow allowed-versions openflow-v1.3 disable false
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus#
```

(5) Configuring static flow match fields

You can create a static flow with the following matched fields: destination-port, ethernet-destination-address, ethernet-destination-mask, ethernet-source-address, ethernet-source-mask, ethernet-type, ingress-port, ip-destination-address, ip-dst-addr-mask, ip-protocol, ip-source-address, ip-src-addr-mask, ip-tos, ipv6-destination-address, ipv6-source-address, source-port, vlan-id, and vlan-priority.

```plaintext
[edit]
XorPlus# set open-flow flow f1 match-field ethernet-destination-mask fe:ff:ff:ff:ff:ff
[edit]
XorPlus# set open-flow flow f1 match-field vlan-id 100
[edit]
XorPlus# set open-flow flow f1 match-field ip-destination-address 192.168.1.0/24
[edit]
XorPlus# set open-flow flow f1 match-field ip-dst-addr-mask 255.255.255.0
[edit]
XorPlus# set open-flow flow f1 match-field ethernet-type 2048
[edit]
XorPlus# set open-flow flow f1 action output interface ge-1/1/1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show open-flow flow-table
 cookie=0x0, duration=7.929s, table=0, n_packets=0, n_bytes=0,
XorPlus#
```

(6) Configuring output actions of static flow

You can add “output” actions for a flow with “interface,” “virtual-interface,” and “controller,” and gigabit interfaces or aggregate ones can as the output port (e.g. ge-1/1/1, ae1).

You can also add “virtual-interface” as the output port (e.g. “all,” “drop”, “local”), and configure “controller” as the output port of a flow.

```plaintext
[edit]
XorPlus# set open-flow flow f1 match-field vlan-id 100
[edit]
XorPlus# set open-flow flow f1 action output interface ge-1/1/1
[edit]
XorPlus# set open-flow flow f1 action output controller
```
If you want add “local” as the output port, (e.g. arp flow) you can configure as following.

```bash
XorPlus# set open-flow flow f1 match-field ethernet-type 2054
XorPlus# set open-flow flow f1 action output virtual-interface local
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(7) Configuring the local port of the OpenFlow bridge

You can connect to the switch by the inband port, which has the local port IP address.

```bash
XorPlus# set open-flow local-port address 192.168.1.1
XorPlus# set open-flow local-port netmask 255.255.255.0
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(8) Configuring modification actions of static flow

You can add “modify” actions for a flow with “ethernet-destination-address,” “ethernet-source-address,” “ip-tos,” “mpls,” “vlan-id,” and “vlan-priority.”

```bash
XorPlus# set open-flow flow f1 match-field vlan-id 100
XorPlus# set open-flow flow f1 action modify vlan-id 200
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(9) Configuring ECMP static flow in L2/L3 mode

In L2/L3 mode, you can add a ECMP static flow, which is stored in the routing table. Traffic that is matched with the flow will be forwarded with ECMP.

```bash
XorPlus# run show open-flow flow-table
OFPST_FLOW reply (OF1.2) (xid=0x2):
 cookie=0x0, duration=11.032s, table=0, n_packets=0, n_bytes=0,
XorPlus#
```
XorPlus# set vlans vlan-id 100 l3-interface vlan100
[edit]
XorPlus# set vlans vlan-id 200 l3-interface vlan200
[edit]
XorPlus# set vlans vlan-id 300 l3-interface vlan300
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/1 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/2 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/3 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/4 family ethernet-switching port-mode trunk
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/1 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/2 family ethernet-switching vlan members 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/3 family ethernet-switching vlan members 200
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/4 family ethernet-switching vlan members 300
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set vlan-interface interface vlan100 vif vlan100 address 1.1.1.1 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan200 vif vlan200 address 2.2.2.2 prefix-length 24
[edit]
XorPlus# set vlan-interface interface vlan300 vif vlan300 address 3.3.3.3 prefix-length 24
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/1 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/2 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/3 crossflow enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set open-flow flow f1 match-field ethernet-destination-address 08:9e:01:39:1a:fe
[edit]
XorPlus# set open-flow flow f1 match-field ip-destination-address 4.4.4.0/24
[edit]
XorPlus# set open-flow flow f1 match-field vlan-id 100
[edit]
XorPlus# set open-flow flow f1 match-field ethernet-type 2048
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/2 vlan-id 200
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/2 src-mac 08:9e:01:39:1a:fe
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/2 next-hop 08:9e:01:39:1a:11
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/3 vlan-id 300
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/3 src-mac 08:9e:01:39:1a:fe
[edit]
XorPlus# set open-flow flow f1 action ecmp output-interface te-1/1/3 next-hop 08:9e:01:39:1a:22
(10) Configuring the switch’s working mode

You can configure the switch to work in TCAM mode or L2/L3 mode. In TCAM mode, all flows will be installed in the TCAM table. In L2/L3 mode, all flows will be installed in the routing and FDB tables.

```
XorPlus# set open-flow working-mode tcam-mode
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

(11) Configuring your OpenFlow controller

You can configure multiple controllers for the OpenFlow bridge (only one of them will be the active controller).

```
XorPlus# set open-flow controller contr-serv address 192.168.1.100
[edit]
XorPlus# set open-flow controller contr-serv port 6633
[edit]
XorPlus# set open-flow controller contr-serv protocol tcp
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
```

Group table Configuration

In PicOS2.1, supports group table. Because of the ASIC limitation, not all buckets in a group table will be installed to ASIC for a flow. The system will install buckets at most as possible to ASIC. User can create group tables with type all/indirect/select/fast-failover. You can add “modify” actions for a bucket with “ethernet-destination-address,” “ethernet-source-address,” “ip-tos,” “mpls,” “vlan-id,” and “vlan-priority.”

(1) Create group table with one bucket

user can create a group table and a flow whose action is a group table.

```
XorPlus# set open-flow groups group-id 1 type all
[edit]
```
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 1 action output=interface ge=1/1/2
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set open-flow groups group-id 1 bucket-id 1 action output
interface ge=1/1/2
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus# set open-flow flow f1 match field ethernet-destination-address 22:00:00:00:00:00
[edit]
XorPlus# set open-flow flow f1 action group 1
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#
XorPlus#
XorPlus# run show open-flow groups
OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
group-id=1, type=all
bucket 1:
weight=NONE, watch_port=NONE, watch_group=NONE

XorPlus#
XorPlus# run show open-flow flow-table
cookie=0x0, duration=4.001s, table=0, n_packets=0, n_bytes=0, dl_dst=22:00:00:00:00:00
actions=group:1
XorPlus#

(2) Create group table type select

XorPlus# set open-flow groups group-id 2 type select
[edit]
XorPlus# set open-flow groups group-id 2 bucket-id 1 action modify eth-src-address 22:00:00:00:00:11
[edit]
[edit]
XorPlus# set open-flow groups group-id 2 bucket-id 1 action output=interface ge=1/1/3
[edit]
XorPlus# set open-flow groups group-id 2 bucket-id 2 action modify eth-src-address 22:00:00:00:00:22
[edit]
[edit]
XorPlus# set open-flow groups group-id 2 bucket-id 2 action output=interface ge=1/1/4
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus#

(3) Create group table type fast-fireover

XorPlus# set open-flow groups group-id 1 type ff
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 1 watch-port ge=1/1/1
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 1 action modify eth-dst-address 22:00:00:00:00:11
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 1 action output-interface ge-1/1/2
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 2 watch-port ge-1/1/3
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 2 action modify eth-dst-address 22:00:00:00:00:22
[edit]
XorPlus# set open-flow groups group-id 1 bucket-id 2 action output-interface ge-1/1/4
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
XorPlus# run show open-flow groups
OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):
group-id=1, type=fast failover
bucket 1:
weight=NONE, watch_port=1, watch_group=NONE
actions=mod_dl_dst:22:00:00:00:00:11, output:2
bucket 2:
weight=NONE, watch_port=3, watch_group=NONE
actions=mod_dl_dst:22:00:00:00:00:22, output:4

XorPlus#

(4) Delete group table

XorPlus# delete open-flow groups group-id 1
Deleting:
  1 {
    type: "ff"
    bucket-id 1 {
      watch-port: "ge-1/1/1"
      action {
        modify {
          eth-dst-address: 22:00:00:00:00:11
        }
        output-interface "ge-1/1/2"
      }
    }
    bucket-id 2 {
      watch-port: "ge-1/1/3"
      action {
        modify {
          eth-dst-address: 22:00:00:00:00:22
        }
        output-interface "ge-1/1/4"
      }
    }
  }
OK
[edit]
XorPlus# commit
Merging the configuration.
Commit OK.
Save done.
[edit]
Crossflow Configuration Example

In the following topology, we build a server network in a datacenter. The following requirements should be met:

- Servers should not be able to communicate with each other, which means traffic from a server can only be forwarded in the upstream direction.
- The network should be scalable, and the configuration of the switch should be simple (e.g., isolating the traffic between servers by ACLs or VLANs is too complex of a configuration).

You can configure a ToR switch manually or by a controller—it's up to you.

Figure 8-5. Crossflow network.

(1) Configuring the P3295-1 switch

For P3295-1, configure portsge-1/1~ge-1/48 in crossflow mode. Create 48 flows that will make traffic from the servers be forwarded only upstream, and be sure to configure flows that will forward the downstream traffic to the corresponding server.

```
XorPlus# set interface max-ac1-rule-limit ingress 400
[edit]
XorPlus# set interface max-route-limit 6000
[edit]
XorPlus# commit

Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1 crossflow enable true
[edit]
```
XorPlus# set interface gigabit-ethernet ge-1/1/1 crossflow local-control false
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/2 crossflow local-control false
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet ge-1/1/3 crossflow local-control false
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/49 crossflow enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

You should also configure the flows to forward packets correctly:

XorPlus# set open-flow working-mode tcam-mode
[edit]
XorPlus# set open-flow flow server-1-upstream match-field ingress-port ge-1/1/1
[edit]
XorPlus# set open-flow flow server-1-upstream action output interface te-1/1/49
[edit]
XorPlus# set open-flow flow server-1-downstream match-field ingress-port te-1/1/49
[edit]
XorPlus# set open-flow flow server-1-downstream match-field ip-destination-address 172.16.1.2/32
[edit]
XorPlus# set open-flow flow server-1-downstream action output interface ge-1/1/1
[edit]
XorPlus# set open-flow flow server-2-upstream match-field ingress-port ge-1/1/2
[edit]
XorPlus# set open-flow flow server-2-upstream action output interface te-1/1/49
[edit]
XorPlus# set open-flow flow server-2-downstream match-field ingress-port te-1/1/49
[edit]
XorPlus# set open-flow flow server-2-downstream match-field ip-destination-address 172.16.1.3/32
[edit]
XorPlus# set open-flow flow server-2-downstream action output interface ge-1/1/2
[edit]
XorPlus# set open-flow flow server-3-upstream match-field ingress-port ge-1/1/3
[edit]
XorPlus# set open-flow flow server-3-upstream action output interface te-1/1/49
[edit]
XorPlus# set open-flow flow server-3-downstream match-field ingress-port te-1/1/49
[edit]
XorPlus# set open-flow flow server-3-downstream match-field ip-destination-address 172.16.1.4/32
[edit]
XorPlus# set open-flow flow server-3-downstream action output interface ge-1/1/3
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]

If you do not wish to manually configure the above flows with the CLI, you can configure a controller to perform those tasks:

XorPlus# set open-flow controller user-contr address 172.16.100.1
[edit]
XorPlus# commit
Waiting for merging configuration.
(2) Configuring P3295-2 and P3295-3 switches
You can configure P3295-2 and P3295-3 using the instructions for configuring P3295-1.

(3) Configuring the P3920 switch
For P3920, configure ports te-1/1/1~te-1/1/48 as a Layer 3 interfaces and enable the OSPF interface in qe-1/1/49. The interface qe-1/1/49 will join the OSPF network to the outside.

```
XorPlus# set vlans vlan-id 100 l3-interface vlan100
[edit]
XorPlus# set vlans vlan-id 200 l3-interface vlan200
[edit]
XorPlus# set vlans vlan-id 300 l3-interface vlan300
[edit]
XorPlus# set vlans vlan-id 400 l3-interface vlan400
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/1 family ethernet-switching native-vlan-id 100
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/2 family ethernet-switching native-vlan-id 200
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/3 family ethernet-switching native-vlan-id 300
[edit]
XorPlus# set interface gigabit-ethernet qe-1/1/49 family ethernet-switching native-vlan-id 400
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface max-acl-rule-limit ingress 400
[edit]
XorPlus# set interface max-route-limit 6000
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/1 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/2 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet te-1/1/3 crossflow enable true
[edit]
XorPlus# set interface gigabit-ethernet qe-1/1/49 crossflow enable true
[edit]
XorPlus# commit
Waiting for merging configuration.
```
Commit OK.
Save done.

XorPlus# set open-flow working-mode tcam-mode
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

XorPlus# set open-flow flow net-1-upstream match-field ingress-port te-1/1/1
[edit]
XorPlus# set open-flow flow net-1-upstream action output interface qe-1/1/49
[edit]
[edit]
XorPlus# set open-flow flow net-2-upstream match-field ingress-port te-1/1/2
[edit]
XorPlus# set open-flow flow net-2-upstream action output interface qe-1/1/49
[edit]
[edit]
XorPlus# set open-flow flow net-3-upstream match-field ingress-port te-1/1/3
[edit]
XorPlus# set open-flow flow net-3-upstream action output interface qe-1/1/49
[edit]
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

XorPlus# set protocols ospf4 area 0.0.0.0 interface vlan400 vif vlan400 address 172.16.4.1
[edit]
XorPlus# set protocols ospf4 router-id 1.1.1.1
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

XorPlus# set policy policy-statement static-to-ospf term t1 from protocol connected
[edit]
XorPlus# set protocols ospf4 export static-to-ospf
[edit]
XorPlus# commit
Waiting for merging configuration.
Commit OK.
Save done.

Be sure to configure the OSPF interface to work with the OSPF Layer 3 network.