
Overview of the ORBIT Radio Grid Testbed for Evaluation of 
Next-Generation Wireless Network Protocols 

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu and M. Singh 
WINLAB, Rutgers University, 73 Brett Rd, Piscataway, NJ 08854, USA 

Email: {ray, seskar, max, sachin, kishore, harisk, rjs, hliu, singh}@winlab.rutgers.edu 
 
 

Abstract—This paper presents an overview of the ORBIT (Open 
Access Research Testbed for Next-Generation Wireless Networks) 
radio grid testbed1, that is currently being developed for scalable 
and reproducible evaluation of next-generation wireless network 
protocols.  The ORBIT testbed consists of an indoor radio grid 
emulator for controlled experimentation and an outdoor field 
trial network for end-user evaluations in real-world settings.  The 
radio grid system architecture is described in further detail 
including an identification of key hardware and software 
components.  Software design considerations are discussed for 
the open-access radio node, and for the system-level controller 
that handles management and control.  The process of specifying 
and running experiments on the ORBIT testbed is explained 
using simple examples.  Experimental scripts and sample results 
are also provided. 
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I.  INTRODUCTION 
It is recognized that powerful technology and market trends 

towards portable computing and communication devices imply 
an increasingly important role for wireless access in the next-
generation Internet. At the same time, new sensor and 
pervasive computing applications may be expected to drive 
large-scale deployments of embedded computing devices 
interconnected via new types of short-range wireless networks. 
Although there is a great deal of research activity on future 
wireless/sensor networks and applications, it is observed that 
much of this work relies on a formal separation between the 
radio and networking layers due to the absence of easily 
available tools for modeling, emulation or rapid prototyping of 
a complete wireless network. As a result, research on wireless 
network protocols and applications tends to be conducted 
predominantly using simulations with simplified radio system 
models that do not capture real physical layer effects. 

A recent technical report [1] states “Since it is difficult to 
conduct experiments with real mobile computers and wireless 
networks, nearly all published MANET articles are buttressed 
with simulation results, and the simulations are based on 
common simplifying assumptions”. Most of the simplifying 
assumptions made in the simulations, compounded by limited 
real-world physical layer modeling capabilities of existing 
simulators often affect the quality of the results [2] and also 
their reproducibility.  Thus, there is an increasing need in the 
research community to be able to perform controlled 
experimental investigations of protocols and evaluations of 
system design using real-world wireless devices. 
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In the recent NSF-sponsored Network Testbeds Workshop 
Report [3], it was concluded that “open wireless multi-user 
experimental facility (MXF) testbed” for wireless networking 
would be increasingly important to the research community in 
view of the limitations of available simulation methodologies 
and the growing importance of “cross-layer” protocol research.  
The speed of innovation and productivity of researchers in the 
wireless networking field can be significantly improved with 
the development of a flexible, open-access wireless network 
testbed that is available to experimental researchers across the 
networking community. Such testbeds can also help accelerate 
consensus on adoption of standards via reproducible 
experimentation and access to open-source protocols. These 
considerations motivated the ORBIT testbed project which 
aims to provide a flexible, open-access multi-user experimental 
facility to support research on next-generation wireless 
networks.  

The remaining sections are organized as follows: Section II 
explains the design requirements for a wireless testbed and the 
system architecture of ORBIT based on these requirements. We 
describe the various hardware and software components in 
Section III. Finally, we explain the life-cycle of an experiment 
on ORBIT in Section IV and present some initial experimental 
results using the ORBIT infrastructure in Section V. 

II. ORBIT TESTBED DESIGN METHODOLOGY AND SYSTEM 
ARCHITECTURE 

The development of a general-purpose open-access wireless 
multi-user experimental facility poses significant technical 
challenges that do not arise in wired network testbeds such as 
Emulab [4] or ABone [5]. In particular, it is far more difficult 
to set up a reproducible wireless networking experiment due to 
random time variations in mobile user location and associated 
wireless channel models. In addition, wireless systems tend to 
exhibit complex interactions between the physical, medium 
access control and network layers, so that strict layering 
approaches often used to simplify wired network prototypes 
cannot be applied here. Some of the basic characteristics of 
radio channels that need to be incorporated into a viable 
wireless network testbed are as follows 

− Radio channel properties depend on specific wireless node 
locations and surroundings. 

− Physical layer bit-rates and error-rates are time-varying. 
− Shared medium layer-2 protocols on the radio link have a 

strong impact on network performance. 



− There are complex interactions between different layers of 
the wireless protocol stack and currently their mutual 
interaction cannot be studied easily. 

− User’s exhibit random mobility and location also plays a 
role. 
 

A flexible wireless network testbed must be able to support 
experimental research on a broad range of wireless networking 
issues and application concepts with various network 
topologies and network layer protocol options. For the testbed 
to be useful, it should be scalable and cover a sufficiently broad 
range of wireless network research problems that might be 
anticipated over the next 5-10 years.  

Some examples of systems or protocol designs that help to 
understand the overall design space under consideration are: 

− Large-scale wireless networks based on 802.11a/b/g radio 
access along with new protocols for discovery, routing, 
security etc.  

− Mobile ad hoc networks (MANET), typically based on 
802.11x WLAN radios, extended to support multi-hop ad 
hoc routing protocols such as AODV [6] and DSR [7].  

− Wireless sensor networks and pervasive computing 
applications involving embedded radio devices to create a 
“smart” environment. 

− Mobile applications such as location-based services, VoIP 
over MANET etc.    

 

The system architecture of the ORBIT testbed is based on 
the general requirements discussed above.  The key design 
goals adopted for this testbed are summarized as follows: 

− scalability, in terms of the total number of wireless nodes 
(~100’s). 

− reproducibility of experiments which can be repeated with 
similar environments to get similar results. 

− open-access flexibility giving the experimenter a high-level 
of control over protocols and software used on the radio 
nodes. 

− extensive measurements capability at radio PHY, MAC 
and network levels, with the ability to correlate data across 
layers in both time and space.  

− remote access testbed capable of unmanned operation and 
the ability to robustly deal with software and hardware 
failures. 

 
As shown in Fig. 1, the ORBIT testbed uses a two-tier 
architecture with a lab emulator/field trial network architecture 
to deal with the important issue of reproducibility in 
experimentation, while at the same time supporting the ability 
to evaluate protocol and application performance in real-world 
settings.  In particular, the laboratory-based wireless network 
emulator is constructed using an innovative approach 
involving a large 2-dimensional array of static 802.11x radio 
nodes, which can be dynamically interconnected into specified 
topologies for wireless network experiments with 
reproducibility for quantitative evaluation of various new 
protocols, or application and system concepts. Once the basic 
protocol or application concepts have been validated on the 
lab emulator platform, users can migrate their software to a 
wireless field trial network that will provide a reconfigurable 
mix of cellular (3G) and 802.11x wireless access in a real-
world setting (spanning a region about 5 km wide and 2 km 
long, including university campuses, suburbs and downtown 
areas). The first phase of this project involves setting up the 
indoor radio grid emulator, which will be the focus of the 
remainder of this paper. 

The radio grid emulator (as shown in Fig. 2) currently 
consists of 64 wireless nodes having 802.11a/b/g wireless cards 
laid out in a 8x8 grid with ~1m spacing between nodes.  Each 
node is connected via multiple high-speed Ethernet links for 
transfer of applications, control and management information.  
The system will be extended to 20x20 radio nodes in the next 
phase of work. Users can have full access to the radio nodes 
used in their experiments, download and run their own OS 
image and software packages, control and reboot the nodes, as 
well as access node console and console logs.  
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Figure 1 High-level View of Proposed 2-Tier System Architecture for ORBIT 



 

Figure 2 Orbit System Architecture 

For example, experimenters can install their own network 
layer protocols or new application software to construct a 
specific networking or application scenario for study.  

Power and interference levels corresponding to the selected 
radio system scenario are emulated through a “mapping” 
algorithm. Experimental data collection tools are also provided 
to support research evaluation, including network traffic and 
performance as well as radio link quality and spectrum usage 
aspects.  

III. ORBIT TESTBED: HARDWARE AND SOFTWARE 
COMPONENTS 

The ORBIT testbed includes the following major hardware 
and software components. 

A. Hardware Components 
1) ORBIT radio nodes: The radio nodes, as shown in Fig. 

3, constitute the grid and serve as the primary platform for user 
experiments. 

 

Figure 3 ORBIT: Radio Node 

The radio node is a custom wireless node which consists of:  
− 1-GHz VIA C3 processor with 512 MB of RAM and a 

20 GB local hard disk 
− two wireless mini-PCI 802.11a/b/g interfaces 
− two 100BaseT Ethernet ports for experimental data and 

control respectively 

− integrated chassis manager, that is used to remotely 
monitor the status of each radio node’s hardware. The 
nodes can be reset, powered on/off remotely by the CM 
through a third Ethernet interface 

2) Instrumentation subsystem intended to provide 
capabilities for measurement of radio signal levels and to create 
various types of artificial RF interference (white noise, colored 
noise, microwave oven like noise etc.) inside the grid. The 
intereference generator is based on RF Vector Signal Generator 
while the spectrum measurements are done using Vector Signal 
Analyzers. 

 
3) Independent WLAN monitor system which provides a 

MAC/network layer view of the radio grid’s components using 
a number of WLAN “observers” spread across the system. 

 
4) Support servers which includes the front-end servers for 

web services and backend servers for experimentation and data 
storage. The database servers support multi-terabyte storage 
capacity. 

B. Software Components 
Software packages and libraries have been developed to 

support both application/protocol evaluations. These include 
common libraries for traffic generation, measurement 
collection etc. and also provide easy hooks to enable "expert" 
users to develop their own applications, protocol stacks, MAC 
layer modifications and/or other experiments on the testbed. To 
give an idea of the flexibility that the software needs to 
provide, consider the following sample experiment scenarios, 

− Simple users may only want to define a network topology 
using standard MAC, network and transport layer 
protocols as well as a standard traffic generator. The user 
may be interested in measuring standard supported 
statistics such as throughput, average delay, packet loss 
etc. These tools are provided as default libraries. 

− More advanced users may want to run cross-layer 
experiments, which will need support from the kernel so as 
to allow access to the data and control plane of all layers of 
the standard protocol stack. For such users, full node 
access can be provided along with a framework for 
measurement collection so that they can easily define new 
statistics, choose measurement points and collect 
measurements based on samples or time intervals. 

 
A layered approach and modular design, with open APIs, 

hides the unnecessary details of experiment operation and 
complexity from users. In addition to the testbed software 
packages and libraries, it is expected that re-usable components 
and packages will also be developed by the user community. In 
order to support user experiments, the ORBIT testbed has a 
software framework as shown in Fig.4 consisting of 
management/control software as well as user level application 
software for the radio nodes. 

Management 
plane switch 

Data 
plane 
switch 

Application 
servers (user 
applications, 
delay nodes, 
mobility 
controllers)

Internet VPN Gateway / 
Firewall 

Back end 
Servers 

Front-end 
Servers 

Gigabit backbone VPN Gateway 
 to Wide-Area  
Testbed 

Spectrum  
Measurement  

Interference 
Sources  



 

Figure 4 Software Architecture of ORBIT Testbed 

1) Management/Control Software 
The following testbed and experiment management 

software components have been developed.  

a) Node Handler: The purpose of the Node Handler is to 
disseminate experiment scripts using multicast to the Node 
Agents residing on the individual nodes, in order to orchestrate 
the experiment. The Node Handler is Tcl-based and processes 
the experiment script, keeps track of the experiment steps and 
events, and sends them to the involved Node Agents at the 
appropriate time. The Node Agent reports back the state of 
experiment command execution to the Node Handler 

b) Collection Server (CS): The purpose of the collection 
server is to collect the reported measurements during the 
experiment. The nodes collect the statistics and send them to 
the collection server over a multicast channel after encoding 
them into XDR [8] format. This multicast channel is unique per 
experiment. The collection server provides a type-safe 
mechanism to collect experimental results reliably and store 
them for post-processing. 

c) Disk-Loading Server: The purpose of the disk-
loading server is to enable quick re-imaging of hard disks on 
the nodes as per the requirements of the user. This service 
works over a reliable multicast session using Frisbee [9] and is 
highly scalable. It allows for different groups of nodes to have 
different OS images between experiments.  

2) Software for Radio Nodes 
The following software components and libraries have been 

developed based on Linux kernel 2.6.4 as target platform to 
support the experiment and to provide libraries and interfaces 
for the user application development.   

a) Node Agent: This is the component equivalent to 
NodeHandler that resides on the ORBIT nodes and listens to 
commands from the ORBIT Node Handler. It can run and stop 
the applications, dynamically pass the parameters to the 
applications, and report the experiment state to the controller. 

b) ORBIT Measurement Library (OML): OML defines 
the data structures and functions for sending/receiving and 
encoding/decoding measurement data that is exchanged in 
XDR format. Testbed users have the option to choose the filters 
to be applied to each measured metric. OML is used at the 
radio nodes (clients) and collection server. This software has 
been developed to reduce the burden of statistic collection on 
application developers. 

c) Libmac 
Libmac is a custom user-space C library that allows the 

applications to inject and capture MAC layer frames. It also 
allows manipulation of wireless parameters such as TxPower, 
channel settings and recording RSSI, noise on an aggregate and 
a per-packet basis. The primary purpose of libmac is to provide 
a bridge between device drivers and the applications such that 
application developers can easily use a standard interface to 
communicate with wireless device drivers instead of worrying 
about their underlying mechanism. 

IV. LIFECYCLE OF AN EXPERIMENT 
A typical ORBIT experiment involves experiment 

definition, node assignment, node configuration, loading of 
software packages, configuration of dynamic parameters and 
data collection. As shown in Fig. 5, the following steps are 
typically involved in an experiment. 

 
Figure 5 Life Cycle of an Experiment 

− The experiment details are translated into a script that 
identifies the nodes to be assigned for the experiment, 
configures the wired and wireless interfaces according 
to the requirements of the experiment, fetches the 
appropriate application, libraries required to run the 
experiment and specifies (optional) statistic collection 
points and intervals 

− This information is disseminated by the NodeHandler 
software to the corresponding NodeAgent residing on 
each node. 

− The NodeAgent executes the script, performs the 
experiment which may involve statistics collection 
done by the OML library. 

− A separate run-time and post-experiment database 
allows users to quickly view results during experiment 
run-time as well archive them for future retrievals and 
offline analysis. 
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V. SAMPLE EXPERIMENTAL RESULTS 
To illustrate the life-cycle of an experiment, we explain a 

few sample experiments that follow the flowchart described in 
Fig. 5, with a script to define the nodes involved, configure 
interfaces, download necessary traffic generator and libraries 
needed to run the experiment, configure the statistics collection 
parameters and the database, and then handle the dynamic 
aspects such as changes in offered load, channels etc.  

A. Experiment 1: To study the effect of 802.11b interference 
on the performance of a link under test (LUT) 

1) Experiment details 
The experiment consists of 8 nodes, with a sender sending 

UDP packets to a receiver (that forms the LUT) and six other 
interfering nodes that simply broadcast 802.11 packets on the 
same channel as the sender-receiver pair. Both the sender and 
all interferers transmit UDP packets of different packet sizes at 
1 mW. All the nodes are configured to be on Channel 1 initially 
and then LUT is then moved away one channel at a time, until 
it operates on an orthogonal channel (Channel 6) w.r.t the 
interferers. The goal is to observe the effect on the packet loss 
of the obstructed link as it is moved to an orthogonal channel.  

2) Experiment script 
The above experiment contains a static configuration 

involving selection of nodes, initial configuration of interfaces 
such as channel settings, transmit power levels, IP addresses 
etc as well as fetching the appropriate application and libraries 
from the server to run the experiment. Fig. 6 demonstrates how 
this static configuration is translated into a Tcl script.  

 

Figure 6 Sample script: Static configuration 

Once the static part completes, the experiment is started and 
the dynamic parameter changes are handled as shown in Figure 
7. Note that by using statements beginning with whenAll, it can 
be ensured that the pre-conditions necessary to execute the 
current instruction have been met. At the end of the 
experiment, the temporary database is cleaned; the results are 
time-stamped and stored on a separate database for easy access 
and future retrievals. 

 

Figure 7 Sample script: Dynamic configuration 

3) Experimental Results 
As shown in Fig. 8, as the channel separation between 

communicating pair and other interferers increases, the packet 
loss of the communicating pair reduces. 

 

Figure 8 Packet loss for different channel separations and 
payload lengths 

When the channel separation is 1 or 2, packet loss is higher 
due to lack of proper carrier sensing between the sender and the 
interferers. It is interesting to note that the packet loss for all 
packet sizes increases slightly when the channel separation is 4 
(i.e the sender-receiver link is on Channel 5). This is attributed 

#Identify the nodes involved in the experiment  using IP  
# addresses, group them and reboot them. 
expectNode node1-1 192.168.161.11 "sender" "exp1" "reboot" 
expectNode node1-4 192.168.161.14 "receiver" "exp1" "reboot" 
expectNode node3-1 192.168.161.31 "interferer" "exp1" "reboot“ 
… 
#Set wireless interface in ad-hoc mode on all nodes (indicated 
# by /*/* wildcards) w0 : wireless interface (eth2/wlan0). 
configure /*/* /net/w0/mode  ad-hoc 
… 
#Set the transmit power to 1 mW on all nodes of  sender group . 
configure /sender/*  /net/w0/xmitPower  1 
 
#When all nodes are configured, fetch application from server. 
whenAll /*/*/system/status are "UP" do { 
    install /*/* http://external1.orbit -lab.org/repository/exp1.tar 
} 

#Start collection server to enable statistics collection. 
on /*/*/proc/status:RUNNING do { 
      set url http://external1.orbit-lab.org/repository/oml_exp1.xml 
       set s [::http::geturl "http://idb1.orbit-

lab.org:5000/startCollectionServer?config_file=$url&app_nam
e=exp1"] 

} 
#Start sender application on all the nodes of sender group. 
run /sender/* sender_app /opt/orbit/bin/sender_app  -c  

oml_client_pnp.xml -n  node_name  -t  sender  -i  devw0  -p  
readparams 

configure /sender/* /proc/genny/transport use_sock … 
 
runExperiment  $channel  $packetSize  $sleep  $duration 
 
# Dynamically changes channels from 1 to 6 and packet sizes  
# from 256 to 1280 bytes during the experiment.  
proc runExperiment {channel packetSize rate duration} { 
      if { $packetSize > 1280  &&  $channel > 6 }  { 
            setStatus /experiment/state "DONE.OK" 
        return  
     } else { 
        if { $channel > 6 } { 
            set channel 1 
            incr packetSize 256 
            configure /sender/* /proc/sender_ap/payload_length 

$packetSize} 
         } 
         after $duration [ runExperiment [incr channel] $packetSize $rate 

duration] 
      } 
} 



to the fact that Channel 5 happens to be adjacent to an 
infrastructure AP (on channel 6). 

B. Experiment 2: Effect of varying transmit power of sender 
on the performance in the presence of interferers 
As a follow up to the previous experiment, we demonstrate 

the effect of changing the transmit power of the sender-receiver 
link while keeping the interferers’ at 1mW on the packet loss 
for 1024-byte UDP packets at an offered load of 4 Mbps. As 
before, we have one sender-receiver pair (LUT) and 6 
interferers. The channel separation between the LUT and 
interferers is progressively increased.  

We observe that as the channel separation between the LUT 
and the interferers increases, the packet loss drops for all 
transmit power levels. Interestingly, we note that for channel 
separations of 1-4, the performance of the LUT is progressively 
better as the transmit power of the sender increases from 1mW 
to 100 mW. This indicates that interference on adjacent 
channels may be combated by adjusting transmit power levels 
of desired transmission. 

 
Figure 9 Effect of increasing Tx power of obstructed link 

in the presence of interferers 

C. Multi-hop experiment with dual interface Forwarding 
node (FN) 
The goal of this experiment is to measure the improvement 

in network performance in terms of throughput and packet loss 
for a multi-hop network with and without using a dual interface 
forwarding node. In Scenario 1 as shown in Fig. 9, we set up a 
chain topology of three nodes, with node 1 as source, node 3 as 
sink and node 2 as forwarding node. Node 2 is configured to 
forward the packets 1024 byte UDP packets received from 
node 1 to node 3 using a single interface. All the nodes operate 
at 11 Mbps, on the same channel and in ad-hoc mode.  

 

Figure 10 Multi-hop experiment with forwarding node 

In Scenario 2, we configure node 2 to use two interfaces on 
orthogonal channels. The system throughput and packet loss 
for increasing offered loads are recorded. As seen in Fig. 10, 
the performance with a FN operating on orthogonal channels is 

much better than a single interface FN in terms of throughput 
and packet loss. 

 

Figure 11 Performance of a multihop topology with a 
forwarding node (FN)  

With the above different flavors of experiments as 
examples, we hope to validate and demonstrate the usability, 
flexibility, and user-friendliness that the ORBIT testbed 
provides for experimentation, data collection and analysis. 
Such a testbed can truly promote fair comparisons between 
results, and provide a useful platform to perform controlled 
experimental investigations of protocols. 

VI. CONCLUSIONS 
In this paper, we presented the design of a novel radio grid 
emulator testbed that is intended to facilitate a broad range of 
experimental research on next-generation protocols and 
applications. We have also explained a typical experimental 
lifecycle and provided sample experiments as proof-of-
concept validation of the testbed design. Early end-user 
experiments on the ORBIT radio grid are expected to begin in 
the near future, and should lead to further validation and 
refinement of the testbed’s design.  
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