
ORBIT Testbed Software Architecture: Supporting Experiments as a Service

Maximilian Ott, Ivan Seskar, Robert Siraccusa, Manpreet Singh
WINLAB, Rutgers U.

{max, seskar, rjs, singh}@winlab.rutgers.edu
www.orbit-lab.org

Abstract

This paper presents the software architecture of the

ORBIT radio grid testbed1. We describe the
requirements for supporting the lifecycle of an
experiment and how they influenced the overall design
of the architecture. We specifically highlight those
components and services which will be visible to a user
of the ORBIT testbed.

1. Introduction

The ORBIT project [1] provides a flexible wireless
network testbed that is open to the experimental
research community. It was started to address
limitations in understanding real world wireless
networks caused by the community’s reliance on
simulations based on simplifying assumptions, or
simple experiments with a small number of devices.

While in most fields of science an experimental
result will only become accepted when it has been
repeated by peers, this practice has so far been an
elusive goal for the networking community. Even
repeating results based on simulations is difficult due to
dependencies on various software and hardware
configurations that are hard to capture.

The ORBIT project is attempting to address these
issues by:

• Providing a large set of resources to conduct
interestingly large experiments in realistic
settings.

• Capture all dependencies and most environmental
conditions (especially complex radio link layer
issues) to facilitate repeatable experiments.

To that end, we are building two different testbeds.
The first is an indoor grid consisting of 400 nodes
arranged in a 20 by 20 grid separated by about 1 meter
between adjacent nodes. Each node is built on a
standard PC platform with multiple wirelesses and

1 Research supported by NSF NRT Grant
#AN10335244.

wired network interfaces. For the second testbed, we
will deploy similar nodes over an area of approx. 1.5
square miles. Some of these nodes will be placed on
campus shuttle buses to provide mobility along fixed
routes and a fixed schedule. The second testbed will
also include a programmable UMTS basestation with
respective network interfaces on a subset of mobile and
stationary nodes. In addition, we will deploy various
devices to measure traffic and interference across the
relevant portion of the radio spectrum. We will also
provide signal generators to allow the experimenter to
create controlled interference.

Repeatability of wireless experiments is clearly a
challenge, but it is a basic architecture principle
throughout the design of every aspect of the testbed.
While we cannot repeat the outdoor radio channel
between two shuttlebus-based radios during a summer
thunderstorm, we will capture all necessary information
to re-run an experiment by any authorized user at a
later time. This way an experimenter can run multiple
experiments back-to-back using the same equipment,
software, and property settings during similar
environmental conditions. In fact, one of the primary
goals of the indoor grid-based testbed is to control the
radio environment as much as possible to allow for
repeatability independent of time. It is located in a
place with a relatively quiet ambient spectrum, with the
majority of interference produced by controllable
instruments in a repeatable fashion.

System

Control

Measure

D
ep

lo
y

&
 C

on
fig

ur
e

Experimenter

Results

Definition

System

Control

Measure

D
ep

lo
y

&
 C

on
fig

ur
e

Experimenter

Results

Definition

Figure 1: Model of experiment

However, building a wireless testbed for the
community that can be reliably used by experimenters
remotely poses an interesting design challenge and is
more than just an assembly of interesting hardware. In
order to make it useful for a wider audience it must be
easy to use. In fact, our core mantra is:

• Make simple experiments easy
• Make complex ones possible

In other words, we need to provide various levels of
abstractions and support and let the user pick the right
one suitable for their experiments. For instance, most
experiments on mobile applications will be happy with
a “known-to-work” node configuration, while those
working on low-power sensor networks may prefer to
work “on the bare metal”.

What remains constant is the focus on performing
experiments. We want to make it as easy as possible to
design, schedule, perform, and analyze an experiment.
Only a clean and structured approach will ensure that
we capture all the intrinsic information to facilitate
repeatability. As an important added benefit, we can
automate many tasks and in turn reduce the time an
experimenter requires access to the shared resources.

The remaining sections are organized as follows:
We first introduce a model for experiments and
describe the various parts which define them. We then
describe OML, a service for collecting measurements;
and how to port applications to ORBIT. Finally, we
provide a brief tour of the remaining, supporting
services.

2. Defining an Experiment

As mentioned in the introduction, the ORBIT testbed is
a shared resource allowing its users to perform

experiments. But what is an experiment in this context?
Simply put, an experiment can be defined by a
collection of resources assembled into a system. Some
of these resources will expose properties which can be
set and possibly dynamically changed during the
execution of the experiment. Finally, and most
importantly for scientific research, measurements will
be taken from various parts of the experiment setup to
allow for analysis either during or after the experiment
run.

A more detailed model is shown in Figure 1. The
experimenter on the right provides a description of the
experiment, its static and dynamic behavior and the set
of results which should be collected. The description of
the experiment allows the automatic deployment and
configuration of various resources to construct the
experiment. It also describes the value of experiment
properties, either as constants, or as functions of time,
or events. And finally, the experiment description
defines what to measure and how often to measure. It
should be noted, that this model also supports
interactive experiments where the experimenter
interactively changes properties, most likely in
response to observing some of the measurements.

In this model, the experiment description alone
should hold all the information required to build and
run the experiment, as well as re-run it at a later time.
Specifically, experiments on the ORBIT testbed are
defined by the topology of the network, and the
configurations of the individual nodes in this network.
The sheer number of possible combinations requires a
more systematic approach which is shown in Figure 2.
The description of an experiment consists of the
following sections:

• Topology

Figure 2: Components of experiment definition

• Applications
• Prototype
• Mapping
• Staging

2.1. Topology

The topology section defines the nodes involved in the
experiment and the communication pattern between
them. While the choices will be limited for the outdoor
testbed and primarily depend on the bus schedule, the
design of the grid testbed allows for greater flexibility.
We are using controlled interference from some of the
nodes and signal generators to “shape” the channels
between the remaining nodes and with it the topology.
However, realizing an arbitrary topology remains a
very challenging research topic. For the foreseeable
future, the experimenter will be required to choose
from a library of tested topologies such as linear chain,
grid, star, etc. We also expect the research community
to select a small number of topologies to benchmark
results for scenarios, such as “class room”, “office”,
“hallway”, “chain of sensors”, “uniformly distributed
sensor grids”, etc.

2.2. Applications

The applications section will list all the applications
used by this experiment, such as traffic generators,
traffic sinks, etc. This list can only contain already
registered applications. We are treating applications as
resources as they can be used by many different
experiments and we also expect that there will be far
fewer application developers than experimenters.
Similar to an experiment an application is defined by
an application description (AD). The AD describes the
application’s dependencies on other resources, such as
libraries, operating systems, devices and their drivers.
It also describes all properties, constraints on their
value, and if they can dynamically be changed during
an experiment. In addition, the AD lists all the
measurements an application provides and which can
be collected during an experiment. Appendix C lists a
shortened sample of an AD.

The application itself is packaged appropriately and
uploaded to the ORBIT repository. From there it can
be loaded on the desired nodes involved in the
experiment prior to running the experiment.

2.3. Prototype

The grid testbed provide the users access to 400 nodes.
However, we assume that an experimenter will create a

much smaller number of roles which will be assigned to
the nodes with only small “localizations”. We have
formalized that by allowing for the definition of
prototypes and mapping strategies, which describes the
assignment of one or more prototypes to each node
used in the experiment.

A prototype description contains a list of property
declarations (e.g. packet size, packet rate) and a list of
applications which should be installed on the node. In
addition, it defines for each application bindings for all
relevant application properties, as well as a listing of
all the statistics to be collected and how often to collect
them.

The prototype properties provide a mechanism to
bind application properties to node specific properties,
such as the node’s location.

Prototypes can be defined directly in the ED, or
uploaded as a reusable component. The latter case
allows and ED to simply refer to a prototype ensuring
consistency across multiple experiments. Externally
defined prototypes have a version number like
applications. This allows the independent refinement of
a prototype definition while capturing the version used
for a particular experiment maximizes repeatability.

2.4. Mapping

As mentioned before, a mapping strategy defines what
prototype(s) to assign to each node in the experiment.
The simplest strategy is a list explicitly assigning a
specific prototype to a specific node. Other strategies
may define probability distributions, or algorithms to
better capture certain scenarios, or remove bias.
Mapping strategies can also define properties which in
this case will be bound to values specific to an
experiment. Similarly to prototypes, mapping strategies
can be defined inside and outside the ED, including
versioning.

2.5. Staging

The sections of the ED described so far have dealt with
describing the resources needed for the experiment and
how to link them to each other. They also provide a
mechanism to bind properties of a specific resource or
class of resources to “experiment” properties. Next, we
address the handling of the dynamic component of the
experiment that involves changing properties (such as
packet size, frequency of operation, power settings,
packet rate, etc.) during experimentation. For these
dynamic properties, the respective values may change
with time or as a reaction to a particular event.

As a simple example, we consider an experiment to
measure the correlation between received throughput
and packet size for a particular offered load. Let us also
assume that the ED has defined a property
“generator/packetSize” bound to the traffic generator
on all sender nodes. The following script will increase
the packet size by 256 every 2 seconds until it reaches
1280:

for {set s 256} {$s <= 1280} {incr s 256} {
 setParam /e/generators/packetSize $s
 sleep 2000
}

In contrast, we could take advantage of the real-time
measurement support in Orbit (which we describe later)
and design an experiment which will increase the
packet size until the packet error observed by the
receiver exceeds a certain value:

set s 0
do {
 incr s 256
 setParam /e/generators/packetSize $s
 sleep 2000
 set pktError [oml::runQuery “pktError”]
} while { $pktError < 0.1 }

The experiment specific properties are also
accessible to the experimenter through a web-based
management console, or programmatically through a
web service. The latter allows the experimenter to
implement, or use more advanced experiment
management algorithms, or applications.

However, one of the major challenges in controlling
a large number of distributed resources is dealing with
error conditions and the latency with which they can be
discovered. For instance, in the above example, the
setParam function may set the respective property on
many nodes. In a conventional staging script we would
need to add many additional lines of code to ensure
that indeed all generators have successfully performed
the change. In short, error checking and resolving them
will quickly overwhelm the actual experiment code.
This will not only increase the effort necessary to
define a robust experiment, it will also make it much
harder to extract the essence of an experiment from the
script. What is necessary is a clean separation of actual
experiment related instructions and robustness related
functionality.

To achieve this we are mapping all properties and
their meta information into a tree structure. For
instance /e/generators/packetSize defines the path from
the root of the tree to a tree element which represents
the packet size of all “generators” used in the
experiment, while /n/n2-3/proc/generator/packetSize

represents the same property of a specific generator
running on node “n2-3”. In addition, the state of the
tree is monitored by rules. These rules fire, either
periodically, or due to specific changes to the state of
the tree. For instance, the mapping stage in our
previous example added a rule to synchronize the two
mentioned elements. In addition, the “/n/n2-
3/proc/generator/packetSize” element has multiple
children nodes. The “current” element contains the
value confirmed by the application. The “requested”
element contains the value requested by the staging
script. In fact, it is this tree node which is set by the
above mention synchronization rule. We can now add a
rule to monitor discrepancies between the values of
related “requested” and “current” elements. If these
values remain different over a certain period, the rule
fires and the associated script can either raise an alarm,
or try to re-issue the respective command.

The same mechanism can also be used to implement
a type of barrier synchronization. The following rule
fires when all nodes have booted up. It then configures
the first wireless interface (w0) to operate in ad-hoc
mode. In addition, the ESSID of w0 on all nodes in the
“sender” group is set to “ORBIT1”.

whenAll /n/*/*/system/status are "UP" do {
 configure /*/* /net/w0/mode ad-hoc
 configure /sender/* /net/w0/essid ORBIT1
 ...
}

These settings do not really need to be
synchronized, but this way the Node Handler will only
multicast two messages to the entire testbed. The first
argument of “configure” is a pattern defining the
recipients of the respective command.

However, we can easily change the rule to fire as
soon as an individual node comes up, resulting in one
or two messages per node:

on /n/*/*/system/ is “UP” do {
 configure $node /net/w0/mode ad-hoc
}
on /n/sender/*/system/ is “UP” do {
 # this one only fires for “sender” nodes
 configure $node /net/w0/essid ORBIT1
}

This approach is very powerful. We have been
building up a library of rules to monitor the health of
the system and fix small problems autonomously.
These rules can easily be incorporated in experiments
allowing the experimenter to concentrate on what
should be done when everything works fine. However,
we acknowledge the difficulties of debugging a rule-
based system where the interactions between rules is

not always obvious. Only time and feedback from the
experimenter community will tell if we are on the right
track.

3. Measurement Framework (OML)

We have repeatedly stressed the importance of
collecting measurements during the course of running
an experiment. Collecting measurements is often an
afterthought and done in an ad-hoc fashion. A standard
method is writing lines of tab separated numbers and
symbols into various log files. It is not uncommon that

the process of collecting all log files from all the nodes
in a distributed experiment may take longer than the
experiment itself. In addition, each application tends to
define its own format which is rarely documented. It is
also common that crucial information, such as node ID,
date, or parameter settings are missing from theses
logs.

For all these reasons we have decided that ORBIT
should provide a service to support the collection and
to a certain degree, the analysis of measurements. We
therefore, designed and built the ORBIT Measurement
Framework (OML). OML defines a Measurement Point
as a point in a program where the program collects a
tuple of measurements. Or more specifically, where the
program calls a function of the OML client library, or
an automatically generated wrapper functions with a
type-safe signature. The tuple will be serialized by
OML client library, and sent to a Collection Server
where it will be inserted into a relational database. At
the end of the experiment, all the information generated
by this experiment should reside in a single database
which will be available to the experimenter for further
analysis. As many commonly used tools, such as
Matlab, or MS Excel, as well as scripting languages,
such as Perl and TCL, provide SQL database adapters,
analyzing an experiment will become much simpler.
Especially when compared to collecting, parsing, and
merging hundreds of log file.

Figure 3 shows the result of a simple Matlab script
which is listed in Appendix B.

All measurement points are described in the
Application Definition. This allows various tools to

Figure 4: Testbed Services

Figure 3: Sample experiment result

automatically generate the above mentioned wrapper
functions, as well as the schema for the collection
database.

The OML client library also allows the dynamic
insertion of filters on a per-experiment basis. These
filters pre-process the emitted measurements on the
client side and help to control the amount of
measurements actually collected. For instance, we have
implemented filters which average over a certain time
frame, or only report substantial changes of a
measurement value. OML also provides an API to
allow experimenters to customize OML for their
specific purposes.

It should be noted that we differentiate between the
definition of an application’s Measurement Points and
the filter settings in the OML client library for a
particular instance of the application. The MPs are
defined by the application developer in the AD, while
the filter settings are specified by the experimenter in
the EP, as they will depend on what subset of potential
measurements an experenter is interested.

More details on the internal design and how OML
can scale to hundreds of nodes can be found in [2].
This document also contains early-stage performance
measurements.

4. Applications on Orbit

For most users, the core of the experiment, such as a
routing algorithm, will be encapsulated in an
application. The experiment itself is then a collection
of such applications running on various nodes with
specific property settings. While the Orbit
infrastructure will take care of configuring the internals
of the nodes, we need to provide a framework for

application developers to easily adapt their applications
to the Orbit experiment model as outlined in a previous
section.

Figure 4 shows how an experiment is staged on
Orbit. A central Node Handler (NH) communicates
with Node Agents (NA), one on each active node.
Applications will be loaded and executed by the NA on
instructions from the NH. These instructions will also
include the initial property settings for the applications.
However, to allow the experiment to change properties
dynamically and tie an application into the OML
framework, the application needs to be integrated into
what we call the Orbit Application Harness (OAH).
This process starts with the definition of the
Application Definition (AD). We have developed a set
of tools which automatically generate the harness code
which is visualized as the C-clamp in the top right
corner of Figure 4. The application only needs to
provide an entry function and an update function if it
supports dynamic properties. The harness code
includes a data structure for all properties and type-safe
function declarations for every measurement point
defined in the AD. We will also provide a set of
“make” and “ant” targets to automate the tasks of
compiling the application; packaging it, together with
the AD, into an “apt” package; and uploading the result
to the Orbit repository.

We believe that a subset of the OAH will be useful
even outside of Orbit and we are planning on releasing
a toolkit, possibly including an appropriate subset of
OML, for general use in the future.

5. Behind the Scene

So far we have concentrated on describing the parts of
Orbit which are visible and of importance to the
experimenter. In the reminder of the paper we will
describe the various components which facilitate the
execution of experiments. Figure 5 depicts an overview
of all the services currently deployed.

We mentioned in the Introduction that we want to
support experimenters at various “comfort” levels:
from the “cushy” user-space with pre-configured
devices, to the bare metal. However, to allow
experimenters full access to all resources also creates
big operational challenges. For instance, how do we
reclaim a node when an experimental device driver
locks up the entire node?

For many experiments it will be necessary to
perform operations which normally require
administrator or root privileges. How can we ensure
that these changes do not affect the next experimenter?

Figure 5: Staging experiments

We have repeatedly mentioned the importance of
collecting measurements. Ideally, these measurements
should be available to the experimenters almost
instantaneously to allow for steerable experiments to
maximize the time slice given to the experimenter, or
allow for the earliest termination of the experiment if
something goes wrong. How can we collect
measurements without interfering with the experiment
itself?

The following sections will try to answer theses
questions.

5.1. Orbit Nodes

The nodes serve as the primary platform for the
experiments. They are based on an off-the-shelf PC
platform with some modifications:

• 1 GHz VIA C3 processor with 512 MB RAM and
a 20 GB local disk

• Two mini-PCI based 802 a/b/g interfaces
• USB ports and one PCI slot for further expansion
• Two 100BaseT Ethernet ports
• Integrated chassis manager

The chassis manager (CM) provides an additional

Ethernet port which allows us to remotely monitor the
status of a node independent of the node’s CPU and the
network interfaces under its control. The CM can
independently power the node on or off, it reports
supply voltage levels as well as temperature, and it
provides remote access to the node’s serial console.
The experimenter will only have restricted access to
these capabilities as the CM provides us with the
crucial safety net which allows us to reclaim a node no
matter what state it is in.

5.2. Testbed Architecture

Figure 6 shows the different components of the grid
testbed and the various networks connecting it. As
mention above, each node has two 100BaseT Ethernet
ports. The “Data” port can be exclusively used for
experiments. All control traffic, such as communication
between the Node Handler and all its Node Agents, as
well as all measurements will use the Control port. In
fact, the default settings leave the Data port
unconfigured and require the experimenter to
specifically configure it through the NodeHandler. At
the same time, the Control port comes up at boot time
with an IP reflecting its location in the grid. It can also
not be changed by an experimenter. While we cannot
easily enforce it, we encourage all experimenters to
simply forget about the Control network. If an
experiment needs a fixed network connection for a
node, as would be the case for an access point, it
should use the Data port.

The testbed also includes a few WAN emulation
nodes based on NISTNet[3]. We can emulate a WAN
connection between two nodes by assigning their
respective Data ports to separate VLANs. The two
ports of the WAN emulator will be connected to the
same VLANs and forward packets according to the
characteristics of the desired WAN connection.

A set of generic application servers provide support
for experiments such as mobile terminal access to
Internet based services (e.g. web pages, multimedia
streams, etc.). In fact, the WAN emulation will most
likely be used between nodes representing wireless
access points and the application servers.

����
����

	
������

����������

�������

���������������

��

�������

����
���

��������

������

Figure 6: Network architecture

5.3. Mobility support

One of the most challenging goals we set ourselves is
to support mobility without physical movement as it
constitutes an even bigger maintenance challenge. We
are currently experimenting with an approach where
the mobile application will reside in a server off the
grid using a virtual wireless device. The virtual driver
will connect through a tunnel to a node with a real
wireless interface which simply forwards all received
packets into the tunnel and transmits all packets coming
from the tunnel. Coarse mobility can be accomplished
by simply redirecting the tunnel to a node at a different
location according to a specific mobility pattern.

5.4. Utility Services

The testbed also contains a set of utility servers to
provide standard services, such as NTP to synchronize
timestamps across all nodes. These servers also host
the OML backend as well as the Node Handler.

One service we want to specifically mention is
Frisbee [4] which was developed by the Emulab [5]
team. Frisbee implements a clever, secure multicast
protocol to image the disk of many nodes
simultaneously. As mentioned before we want to ensure
that an experiment cannot affect a future one. As we
give user complete access to the nodes, the safest
method to ensure a clean node is to fully install a new
image on every node at the beginning of every
experiment. Obviously, this has to be done as quickly
as possible to minimize “retooling” time between
experiments. Our goal is to complete this task on all
400 nodes in less than five minutes. We have not been
able to verify that yet, but our experiences on smaller
set-ups confirm the results presented in [4] which also
includes measurements for even larger setups, all in
line with our goal.

5.5. User Portal

The user portal is the interface between the
experimenter and the testbed. It supports the full life-
cycle of an experiment: define, schedule, run, and
analyze. As many of these tasks lend themselves to
automation we are providing all exported functionality
primarily as a web service and restrict the user interface
component to those services. This way we will ensure
that anything a user can do through the web interface,
can also be accomplished by program executing in the
user’s domain. In fact, we hope that this approach will
seed various tools we would not have thought of, or the
resources to realize them.

6. Conclusion

In this paper, we presented the software architecture
design for a novel radio grid emulator testbed. We have
introduced a model for defining experiments consisting
of various re-usable sections to facilitate systematic as
well as repeatable experiments. We also described
many of the services we developed to assist testbed
users. Finally, we explained the “safety nets” which
allows us to provide the users with full access to almost
all resources while maintaining 24/7 operation in an
(almost) lights-out facility.

7. References

[1] I. S. D. Raychaudhuri, M. Ott, S. Ganu, K.
Ramachandran, H. Kremo, R. Siracusa, H. Liu, M. Singh,
"Overview of the ORBIT Radio Grid Testbed for Evaluation
of Next-Generation Wireless Network Protocols," submitted
to the IEEE Wireless Communications and Networking
Conference, New Orleans.

[2] M. Singh, "ORBIT Measurements Framework and
Library (OML): Motivations, Design, Implemantation, and
Feature," submitted to Tridentcom, 2005.

[3] D. S. M. Carson, "NIST Net A Linux-based Network
Emulation Tool," Computer Communication Review, vol.
33, 2003.

[4] Mike Hibler, Leigh Stoller, Jay Lepreau, Robert Ricci,
Chad Barb, "Fast Scalable Disk Imaging with Frisbee,"
presented at USENIX Annual Technical Conference, 2003.

[5] Emulab Homepage, http://www.emulab.net.

A. Experiment Definition

<?xml version="1.0" encoding="UTF-8" ?>
<orbit xmlns="schema.orbit-lab.org/062804">
 <experiment id="winlab:wp3:05022004">
 <description>
A simple 2x2 grid with diagonal pairs of sender/receivers on separate channels
 </description>
 <project refid="winlab:wp3" />
 <topology refid="public:topology:grid:1.0" />
 <prototypes>
 <prototype pid="sender" extends="winlab:wp3:prototype:sender">
 <!-- bind parameter to dynamic value in state space "/e/senders/..." -->
 <set-param name="channelA" binding="senders/channelA" />
 <set-param name="channelB" value="1" />
 </prototype>
 <alias pid="receiver" refid="winlab:wp3:prototype:receiver" />
 </prototypes>
 <mapping refid="winlab:wp3:mapping:diagonal-2-2" xOffset="0" yOffset="0"/>
 <stagging refid="winlab:wp3:mapping:ramp:1">
 <set-param name="maxPacketSize" value="1280" />
 </stagging>
 <experimenters>
 <experimenter refid="max" />
 </experimenters>
 </experiment>
</orbit>

B. Sample Matlab Script for Analyzing Results

The following script was used to create Figure 3:

function nsf(dbServer, dbUser, dbPW, database);

% Part where we retrieve data from the database;
mysql('open',dbServer, dbUser, dbPW);
mysql('use', database);
output = struct('time',[],'thr_all',[],'node',[]);
[output.time, output.thr_all, output.node]
 = mysql('select timestamp, throughput, node_id from group2');
[thru1_4, time1_4, thru3_1, time3_1] = sort_mysql(output);

% Finally, the plotting part
subplot(2,1,1);
plot(time1_4, thru1_4, '-*');
title('Throughput On Obstructed Link');
xlabel('Time (sec)'); ylabel('Throuhput (bps)'); grid on;
subplot(2,1,2);
plot(time3_1, thru3_1, '-*');
title('Throughput On Monitor Node'); xlabel('Time (sec)');

ylabel('Throuhput (bps)'); grid on;

C. Application Definition

<?xml version="1.0" encoding="UTF-8" ?>
<orbit xmlns="schema.orbit-lab.org/062804">
 <application id="orbit:winlab:sensorNets:ap">
 <name>AccessPoint</name>
 <version major="0" minor="1" revision="0" />
 <organization>
 <name>WINLAB, Rutgers University</name>
 <url>http://www.winlab.rutgers.edu/</url>
 </organization>
 <shortDescription>Simulate an access point in a sensor network</shortDescription>
 <description>
An access point which periodically sends out a beacon advertising its capabilities and records topology
and routing information.
 </description>
 <url>http://apps.orbit-lab.org/sensorNets/ap/</url>
 <properties>
 <property>
 <name>sensornet_interface</name>
 <mnemonic>s</mnemonic>
 <type>xsd:string</type>
 <dynamic>yes</dynamic>
 <description>Device name for sending beacons</description>
 </property>
 …
 </properties>
 <measurements>
 <measurement id="topology">
 <metric id="node_id" type="xsd:int">
 <description>ID of reporting access node as set in property "sensornet_node_id"</description>
 </metric>
 …
 </measurement>
 …
 </measurements>
 <!-- Admin & Developer -->
 <issueTrackingUrl>http://apps.orbit-lab.org/issues/winlab/sensorNets</issueTrackingUrl>
 <repository>
 <development>scm:cvs:pserver:anoncvs@cvs.orbit-lab.org:/winlab/sensorNets/ap</development>
 <binary>apt:repository.orbit-lab.org/orbit/binary:???</binary>
 </repository>
 <developers>
 <developer>
 …
 </developer>
 </developers>
 <dependencies>
 <dependency>
 <id>libmac</id>
 <version>>= 0.4</version>
 <url>apt:repository.orbit-lab.org/debian/binary:libmac</url>
 </dependency>
 </dependencies>
 </application>
 </orbit>

