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Abstract 

 
This paper presents the software architecture of the 

ORBIT radio grid testbed1. We describe the 
requirements for supporting the lifecycle of an 
experiment and how they influenced the overall design 
of the architecture. We specifically highlight those 
components and services which will be visible to a user 
of the ORBIT testbed.  

1. Introduction 

The ORBIT project [1] provides a flexible wireless 
network testbed that is open to the experimental 
research community. It was started to address 
limitations in understanding real world wireless 
networks caused by the community’s reliance on 
simulations based on simplifying assumptions, or 
simple experiments with a small number of devices.  

While in most fields of science an experimental 
result will only become accepted when it has been 
repeated by peers, this practice has so far been an 
elusive goal for the networking community. Even 
repeating results based on simulations is difficult due to 
dependencies on various software and hardware 
configurations that are hard to capture. 

The ORBIT project is attempting to address these 
issues by: 

• Providing a large set of resources to conduct 
interestingly large experiments in realistic 
settings. 

• Capture all dependencies and most environmental 
conditions  (especially complex radio link layer 
issues) to facilitate repeatable experiments. 

To that end, we are building two different testbeds. 
The first is an indoor grid consisting of 400 nodes 
arranged in a 20 by 20 grid separated by about 1 meter 
between adjacent nodes. Each node is built on a 
standard PC platform with multiple wirelesses and 

                                                           
1 Research supported by NSF NRT Grant 
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wired network interfaces. For the second testbed, we 
will deploy similar nodes over an area of approx. 1.5 
square miles. Some of these nodes will be placed on 
campus shuttle buses to provide mobility along fixed 
routes and a fixed schedule. The second testbed will 
also include a programmable UMTS basestation with 
respective network interfaces on a subset of mobile and 
stationary nodes.  In addition, we will deploy various 
devices to measure traffic and interference across the 
relevant portion of the radio spectrum. We will also 
provide signal generators to allow the experimenter to 
create controlled interference.  

Repeatability of wireless experiments is clearly a 
challenge, but it is a basic architecture principle 
throughout the design of every aspect of the testbed. 
While we cannot repeat the outdoor radio channel 
between two shuttlebus-based radios during a summer 
thunderstorm, we will capture all necessary information 
to re-run an experiment by any authorized user at a 
later time. This way an experimenter can run multiple 
experiments back-to-back using the same equipment, 
software, and property settings during similar 
environmental conditions. In fact, one of the primary 
goals of the indoor grid-based testbed is to control the 
radio environment as much as possible to allow for 
repeatability independent of time. It is located in a 
place with a relatively quiet ambient spectrum, with the 
majority of interference produced by controllable 
instruments in a repeatable fashion. 
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Figure 1: Model of experiment 



However, building a wireless testbed for the 
community that can be reliably used by experimenters 
remotely poses an interesting design challenge and is 
more than just an assembly of interesting hardware. In 
order to make it useful for a wider audience it must be 
easy to use. In fact, our core mantra is: 

• Make simple experiments easy 
• Make complex ones possible 

In other words, we need to provide various levels of 
abstractions and support and let the user pick the right 
one suitable for their experiments. For instance, most 
experiments on mobile applications will be happy with 
a “known-to-work” node configuration, while those 
working on low-power sensor networks may prefer to 
work “on the bare metal”.  

What remains constant is the focus on performing 
experiments. We want to make it as easy as possible to 
design, schedule, perform, and analyze an experiment. 
Only a clean and structured approach will ensure that 
we capture all the intrinsic information to facilitate 
repeatability. As an important added benefit, we can 
automate many tasks and in turn reduce the time an 
experimenter requires access to the shared resources. 

The remaining sections are organized as follows: 
We first introduce a model for experiments and 
describe the various parts which define them. We then 
describe OML, a service for collecting measurements; 
and how to port applications to ORBIT. Finally, we 
provide a brief tour of the remaining, supporting 
services. 

2. Defining an Experiment 

As mentioned in the introduction, the ORBIT testbed is 
a shared resource allowing its users to perform 

experiments. But what is an experiment in this context? 
Simply put, an experiment can be defined by a 
collection of resources assembled into a system. Some 
of these resources will expose properties which can be 
set and possibly dynamically changed during the 
execution of the experiment. Finally, and most 
importantly for scientific research, measurements will 
be taken from various parts of the experiment setup to 
allow for analysis either during or after the experiment 
run.  

A more detailed model is shown in Figure 1. The 
experimenter on the right provides a description of the 
experiment, its static and dynamic behavior and the set 
of results which should be collected. The description of 
the experiment allows the automatic deployment and 
configuration of various resources to construct the 
experiment. It also describes the value of experiment 
properties, either as constants, or as functions of time, 
or events. And finally, the experiment description 
defines what to measure and how often to measure. It 
should be noted, that this model also supports 
interactive experiments where the experimenter 
interactively changes properties, most likely in 
response to observing some of the measurements. 

In this model, the experiment description alone 
should hold all the information required to build and 
run the experiment, as well as re-run it at a later time. 
Specifically, experiments on the ORBIT testbed are 
defined by the topology of the network, and the 
configurations of the individual nodes in this network. 
The sheer number of possible combinations requires a 
more systematic approach which is shown in Figure 2. 
The description of an experiment consists of the 
following sections: 

• Topology 

 

Figure 2: Components of experiment definition 
 



• Applications 
• Prototype 
• Mapping  
• Staging 

2.1. Topology 

The topology section defines the nodes involved in the 
experiment and the communication pattern between 
them. While the choices will be limited for the outdoor 
testbed and primarily depend on the bus schedule, the 
design of the grid testbed allows for greater flexibility. 
We are using controlled interference from some of the 
nodes and signal generators to “shape” the channels 
between the remaining nodes and with it the topology. 
However, realizing an arbitrary topology remains a 
very challenging research topic. For the foreseeable 
future, the experimenter will be required to choose 
from a library of tested topologies such as linear chain, 
grid, star, etc. We also expect the research community 
to select a small number of topologies to benchmark 
results for scenarios, such as “class room”, “office”, 
“hallway”, “chain of sensors”, “uniformly distributed 
sensor grids”, etc. 

2.2. Applications 

The applications section will list all the applications 
used by this experiment, such as traffic generators, 
traffic sinks, etc. This list can only contain already 
registered applications. We are treating applications as 
resources as they can be used by many different 
experiments and we also expect that there will be far 
fewer application developers than experimenters. 
Similar to an experiment an application is defined by 
an application description (AD). The AD describes the 
application’s dependencies on other resources, such as 
libraries, operating systems, devices and their drivers. 
It also describes all properties, constraints on their 
value, and if they can dynamically be changed during 
an experiment. In addition, the AD lists all the 
measurements an application provides and which can 
be collected during an experiment. Appendix C lists a 
shortened sample of an AD. 

The application itself is packaged appropriately and 
uploaded to the ORBIT repository. From there it can 
be loaded on the desired nodes involved in the 
experiment prior to running the experiment. 

2.3. Prototype 

The grid testbed provide the users access to 400 nodes. 
However, we assume that an experimenter will create a 

much smaller number of roles which will be assigned to 
the nodes with only small “localizations”. We have 
formalized that by allowing for the definition of 
prototypes and mapping strategies, which describes the 
assignment of one or more prototypes to each node 
used in the experiment. 

A prototype description contains a list of property 
declarations (e.g. packet size, packet rate) and a list of 
applications which should be installed on the node. In 
addition, it defines for each application bindings for all 
relevant application properties, as well as a listing of 
all the statistics to be collected and how often to collect 
them.   

The prototype properties provide a mechanism to 
bind application properties to node specific properties, 
such as the node’s location.  

Prototypes can be defined directly in the ED, or 
uploaded as a reusable component. The latter case 
allows and ED to simply refer to a prototype ensuring 
consistency across multiple experiments. Externally 
defined prototypes have a version number like 
applications. This allows the independent refinement of 
a prototype definition while capturing the version used 
for a particular experiment maximizes repeatability. 

2.4. Mapping 

As mentioned before, a mapping strategy defines what 
prototype(s) to assign to each node in the experiment. 
The simplest strategy is a list explicitly assigning a 
specific prototype to a specific node. Other strategies 
may define probability distributions, or algorithms to 
better capture certain scenarios, or remove bias. 
Mapping strategies can also define properties which in 
this case will be bound to values specific to an 
experiment. Similarly to prototypes, mapping strategies 
can be defined inside and outside the ED, including 
versioning.  

2.5. Staging 

The sections of the ED described so far have dealt with 
describing the resources needed for the experiment and 
how to link them to each other. They also provide a 
mechanism to bind properties of a specific resource or 
class of resources to “experiment” properties. Next, we 
address the handling of the dynamic component of the 
experiment that involves changing properties (such as 
packet size, frequency of operation, power settings, 
packet rate, etc.) during experimentation. For these 
dynamic properties, the respective values may change 
with time or as a reaction to a particular event.  



As a simple example, we consider an experiment to 
measure the correlation between received throughput 
and packet size for a particular offered load. Let us also 
assume that the ED has defined a property 
“generator/packetSize” bound to the traffic generator 
on all sender nodes. The following script will increase 
the packet size by 256 every 2 seconds until it reaches 
1280: 
 
for {set s 256} {$s <= 1280} {incr s 256} { 
 setParam /e/generators/packetSize $s 
 sleep 2000 
} 
 

In contrast, we could take advantage of the real-time 
measurement support in Orbit (which we describe later) 
and design an experiment which will increase the 
packet size until the packet error observed by the 
receiver exceeds a certain value: 
 
set s 0 
do { 
 incr s 256 
 setParam /e/generators/packetSize $s 
 sleep 2000 
 set pktError [oml::runQuery “pktError”] 
} while { $pktError < 0.1 } 
  

The experiment specific properties are also 
accessible to the experimenter through a web-based 
management console, or programmatically through a 
web service. The latter allows the experimenter to 
implement, or use more advanced experiment 
management algorithms, or applications. 

However, one of the major challenges in controlling 
a large number of distributed resources is dealing with 
error conditions and the latency with which they can be 
discovered. For instance, in the above example, the 
setParam function may set the respective property on 
many nodes. In a conventional staging script we would 
need to add many additional lines of code to ensure 
that indeed all generators have successfully performed 
the change. In short, error checking and resolving them 
will quickly overwhelm the actual experiment code. 
This will not only increase the effort necessary to 
define a robust experiment, it will also make it much 
harder to extract the essence of an experiment from the 
script. What is necessary is a clean separation of actual 
experiment related instructions and robustness related 
functionality.  

To achieve this we are mapping all properties and 
their meta information into a tree structure. For 
instance /e/generators/packetSize defines the path from 
the root of the tree to a tree element which represents 
the packet size of all “generators” used in the 
experiment, while /n/n2-3/proc/generator/packetSize 

represents the same property of a specific generator 
running on node “n2-3”. In addition, the state of the 
tree is monitored by rules. These rules fire, either 
periodically, or due to specific changes to the state of 
the tree. For instance, the mapping stage in our 
previous example added a rule to synchronize the two 
mentioned elements. In addition, the “/n/n2-
3/proc/generator/packetSize” element has multiple 
children nodes. The “current” element contains the 
value confirmed by the application. The “requested” 
element contains the value requested by the staging 
script. In fact, it is this tree node which is set by the 
above mention synchronization rule. We can now add a 
rule to monitor discrepancies between the values of 
related “requested” and “current” elements. If these 
values remain different over a certain period, the rule 
fires and the associated script can either raise an alarm, 
or try to re-issue the respective command.  

The same mechanism can also be used to implement 
a type of barrier synchronization. The following rule 
fires when all nodes have booted up. It then configures 
the first wireless interface (w0) to operate in ad-hoc 
mode. In addition, the ESSID of w0 on all nodes in the 
“sender” group is set to “ORBIT1”.  
 
whenAll /n/*/*/system/status are "UP" do { 
    configure /*/* /net/w0/mode ad-hoc 
    configure /sender/* /net/w0/essid ORBIT1 
    ... 
} 
 

These settings do not really need to be 
synchronized, but this way the Node Handler will only 
multicast two messages to the entire testbed. The first 
argument of “configure” is a pattern defining the 
recipients of the respective command.  

However, we can easily change the rule to fire as 
soon as an individual node comes up, resulting in one 
or two messages per node: 
 
on /n/*/*/system/ is “UP” do { 
 configure $node /net/w0/mode ad-hoc 
} 
on /n/sender/*/system/ is “UP” do { 
 # this one only fires for “sender” nodes 
 configure $node /net/w0/essid ORBIT1 
} 
 

This approach is very powerful. We have been 
building up a library of rules to monitor the health of 
the system and fix small problems autonomously. 
These rules can easily be incorporated in experiments 
allowing the experimenter to concentrate on what 
should be done when everything works fine. However, 
we acknowledge the difficulties of debugging a rule-
based system where the interactions between rules is 



not always obvious. Only time and feedback from the 
experimenter community will tell if we are on the right 
track. 

 

3. Measurement Framework (OML)  

We have repeatedly stressed the importance of 
collecting measurements during the course of running 
an experiment. Collecting measurements is often an 
afterthought and done in an ad-hoc fashion. A standard 
method is writing lines of tab separated numbers and 
symbols into various log files. It is not uncommon that 

the process of collecting all log files from all the nodes 
in a distributed experiment may take longer than the 
experiment itself. In addition, each application tends to 
define its own format which is rarely documented. It is 
also common that crucial information, such as node ID, 
date, or parameter settings are missing from theses 
logs.  

For all these reasons we have decided that ORBIT 
should provide a service to support the collection and 
to a certain degree, the analysis of measurements. We 
therefore, designed and built the ORBIT Measurement 
Framework (OML). OML defines a Measurement Point 
as a point in a program where the program collects a 
tuple of measurements. Or more specifically, where the 
program calls a function of the OML client library, or 
an automatically generated wrapper functions with a 
type-safe signature. The tuple will be serialized by 
OML client library, and sent to a Collection Server 
where it will be inserted into a relational database. At 
the end of the experiment, all the information generated 
by this experiment should reside in a single database 
which will be available to the experimenter for further 
analysis. As many commonly used tools, such as 
Matlab, or MS Excel, as well as scripting languages, 
such as Perl and TCL, provide SQL database adapters, 
analyzing an experiment will become much simpler. 
Especially when compared to collecting, parsing, and 
merging hundreds of log file.  

Figure 3 shows the result of a simple Matlab script 
which is listed in Appendix B. 

All measurement points are described in the 
Application Definition. This allows various tools to 

 

Figure 4: Testbed Services 

 

Figure 3: Sample experiment result 



automatically generate the above mentioned wrapper 
functions, as well as the schema for the collection 
database.  

The OML client library also allows the dynamic 
insertion of filters on a per-experiment basis. These 
filters pre-process the emitted measurements on the 
client side and help to control the amount of 
measurements actually collected. For instance, we have 
implemented filters which average over a certain time 
frame, or only report substantial changes of a 
measurement value. OML also provides an API to 
allow experimenters to customize OML for their 
specific purposes. 

It should be noted that we differentiate between the 
definition of an application’s Measurement Points and 
the filter settings in the OML client library for a 
particular instance of the application. The MPs are 
defined by the application developer in the AD, while 
the filter settings are specified by the experimenter in 
the EP, as they will depend on what subset of potential 
measurements an experenter is interested.  

More details on the internal design and how OML 
can scale to hundreds of nodes can be found in [2]. 
This document also contains early-stage performance 
measurements.  

4. Applications on Orbit 

For most users, the core of the experiment, such as a 
routing algorithm, will be encapsulated in an 
application. The experiment itself is then a collection 
of such applications running on various nodes with 
specific property settings. While the Orbit 
infrastructure will take care of configuring the internals 
of the nodes, we need to provide a framework for 

application developers to easily adapt their applications 
to the Orbit experiment model as outlined in a previous 
section. 

Figure 4 shows how an experiment is staged on 
Orbit. A central Node Handler (NH) communicates 
with Node Agents (NA), one on each active node. 
Applications will be loaded and executed by the NA on 
instructions from the NH. These instructions will also 
include the initial property settings for the applications. 
However, to allow the experiment to change properties 
dynamically and tie an application into the OML 
framework, the application needs to be integrated into 
what we call the Orbit Application Harness (OAH). 
This process starts with the definition of the 
Application Definition (AD). We have developed a set 
of tools which automatically generate the harness code 
which is visualized as the C-clamp in the top right 
corner of Figure 4. The application only needs to 
provide an entry function and an update function if it 
supports dynamic properties. The harness code 
includes a data structure for all properties and type-safe 
function declarations for every measurement point 
defined in the AD. We will also provide a set of 
“make” and “ant” targets to automate the tasks of 
compiling the application; packaging it, together with 
the AD, into an “apt” package; and uploading the result 
to the Orbit repository.  

We believe that a subset of the OAH will be useful 
even outside of Orbit and we are planning on releasing 
a toolkit, possibly including an appropriate subset of 
OML, for general use in the future. 

5. Behind the Scene 

So far we have concentrated on describing the parts of 
Orbit which are visible and of importance to the 
experimenter. In the reminder of the paper we will 
describe the various components which facilitate the 
execution of experiments. Figure 5 depicts an overview 
of all the services currently deployed. 

We mentioned in the Introduction that we want to 
support experimenters at various “comfort” levels: 
from the “cushy” user-space with pre-configured 
devices, to the bare metal. However, to allow 
experimenters full access to all resources also creates 
big operational challenges. For instance, how do we 
reclaim a node when an experimental device driver 
locks up the entire node?  

For many experiments it will be necessary to 
perform operations which normally require 
administrator or root privileges.  How can we ensure 
that these changes do not affect the next experimenter? 

 

Figure 5: Staging experiments 



We have repeatedly mentioned the importance of 
collecting measurements. Ideally, these measurements 
should be available to the experimenters almost 
instantaneously to allow for steerable experiments to 
maximize the time slice given to the experimenter, or 
allow for the earliest termination of the experiment if 
something goes wrong. How can we collect 
measurements without interfering with the experiment 
itself? 

The following sections will try to answer theses 
questions. 

5.1. Orbit Nodes 

The nodes serve as the primary platform for the 
experiments. They are based on an off-the-shelf PC 
platform with some modifications: 

• 1 GHz VIA C3 processor with 512 MB RAM and 
a 20 GB local disk 

• Two mini-PCI based 802 a/b/g interfaces 
• USB ports and one PCI slot for further expansion 
• Two 100BaseT Ethernet ports 
• Integrated chassis manager 
 
The chassis manager (CM) provides an additional 

Ethernet port which allows us to remotely monitor the 
status of a node independent of the node’s CPU and the 
network interfaces under its control. The CM can 
independently power the node on or off, it reports 
supply voltage levels as well as temperature, and it 
provides remote access to the node’s serial console. 
The experimenter will only have restricted access to 
these capabilities as the CM provides us with the 
crucial safety net which allows us to reclaim a node no 
matter what state it is in. 

5.2. Testbed Architecture 

Figure 6 shows the different components of the grid 
testbed and the various networks connecting it. As 
mention above, each node has two 100BaseT Ethernet 
ports. The “Data” port can be exclusively used for 
experiments. All control traffic, such as communication 
between the Node Handler and all its Node Agents, as 
well as all measurements will use the Control port. In 
fact, the default settings leave the Data port 
unconfigured and require the experimenter to 
specifically configure it through the NodeHandler. At 
the same time, the Control port comes up at boot time 
with an IP reflecting its location in the grid. It can also 
not be changed by an experimenter. While we cannot 
easily enforce it, we encourage all experimenters to 
simply forget about the Control network. If an 
experiment needs a fixed network connection for a 
node, as would be the case for an access point, it 
should use the Data port.  

The testbed also includes a few WAN emulation 
nodes based on NISTNet[3]. We can emulate a WAN 
connection between two nodes by assigning their 
respective Data ports to separate VLANs. The two 
ports of the WAN emulator will be connected to the 
same VLANs and forward packets according to the 
characteristics of the desired WAN connection. 

A set of generic application servers provide support 
for experiments such as mobile terminal access to 
Internet based services (e.g. web pages, multimedia 
streams, etc.). In fact, the WAN emulation will most 
likely be used between nodes representing wireless 
access points and the application servers. 
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Figure 6: Network architecture 
 



5.3. Mobility support 

One of the most challenging goals we set ourselves is 
to support mobility without physical movement as it 
constitutes an even bigger maintenance challenge. We 
are currently experimenting with an approach where 
the mobile application will reside in a server off the 
grid using a virtual wireless device. The virtual driver 
will connect through a tunnel to a node with a real 
wireless interface which simply forwards all received 
packets into the tunnel and transmits all packets coming 
from the tunnel. Coarse mobility can be accomplished 
by simply redirecting the tunnel to a node at a different 
location according to a specific mobility pattern.   

5.4. Utility Services 

The testbed also contains a set of utility servers to 
provide standard services, such as NTP to synchronize 
timestamps across all nodes. These servers also host 
the OML backend as well as the Node Handler. 

One service we want to specifically mention is 
Frisbee [4] which was developed by the Emulab [5] 
team. Frisbee implements a clever, secure multicast 
protocol to image the disk of many nodes 
simultaneously. As mentioned before we want to ensure 
that an experiment cannot affect a future one. As we 
give user complete access to the nodes, the safest 
method to ensure a clean node is to fully install a new 
image on every node at the beginning of every 
experiment. Obviously, this has to be done as quickly 
as possible to minimize “retooling” time between 
experiments. Our goal is to complete this task on all 
400 nodes in less than five minutes. We have not been 
able to verify that yet, but our experiences on smaller 
set-ups confirm the results presented in [4] which also 
includes measurements for even larger setups, all in 
line with our goal. 

5.5. User Portal 

The user portal is the interface between the 
experimenter and the testbed. It supports the full life-
cycle of an experiment: define, schedule, run, and 
analyze. As many of these tasks lend themselves to 
automation we are providing all exported functionality 
primarily as a web service and restrict the user interface 
component to those services. This way we will ensure 
that anything a user can do through the web interface, 
can also be accomplished by program executing in the 
user’s domain. In fact, we hope that this approach will 
seed various tools we would not have thought of, or the 
resources to realize them. 

6. Conclusion 

In this paper, we presented the software architecture 
design for a novel radio grid emulator testbed. We have 
introduced a model for defining experiments consisting 
of various re-usable sections to facilitate systematic as 
well as repeatable experiments. We also described 
many of the services we developed to assist testbed 
users. Finally, we explained the “safety nets” which 
allows us to provide the users with full access to almost 
all resources while maintaining 24/7 operation in an 
(almost) lights-out facility.  
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A. Experiment Definition 
 
<?xml version="1.0" encoding="UTF-8" ?>  
<orbit xmlns="schema.orbit-lab.org/062804"> 
 <experiment id="winlab:wp3:05022004"> 
  <description> 
A simple 2x2 grid with diagonal pairs of sender/receivers on separate channels 
  </description>  
  <project refid="winlab:wp3" />  
  <topology refid="public:topology:grid:1.0" />  
  <prototypes> 
   <prototype pid="sender" extends="winlab:wp3:prototype:sender"> 
    <!-- bind parameter to dynamic value in state space "/e/senders/..." --> 
    <set-param name="channelA" binding="senders/channelA" />  
    <set-param name="channelB" value="1" />  
   </prototype> 
   <alias pid="receiver" refid="winlab:wp3:prototype:receiver" />  
  </prototypes> 
  <mapping refid="winlab:wp3:mapping:diagonal-2-2" xOffset="0" yOffset="0"/>  
  <stagging refid="winlab:wp3:mapping:ramp:1"> 
   <set-param name="maxPacketSize" value="1280" />  
  </stagging> 
  <experimenters> 
   <experimenter refid="max" />  
  </experimenters> 
 </experiment> 
</orbit> 

B. Sample Matlab Script for Analyzing Results 

The following script was used to create Figure 3: 
 
function nsf(dbServer, dbUser, dbPW, database); 
 
% Part where we retrieve data from the database; 
mysql('open',dbServer, dbUser, dbPW); 
mysql('use', database); 
output = struct('time',[],'thr_all',[],'node',[]); 
[output.time, output.thr_all, output.node]  
  = mysql('select timestamp, throughput, node_id from group2'); 
[thru1_4, time1_4, thru3_1, time3_1] = sort_mysql(output); 
 
% Finally, the plotting part 
subplot(2,1,1);  
plot(time1_4, thru1_4, '-*'); 
title('Throughput On Obstructed Link'); 
xlabel('Time (sec)'); ylabel('Throuhput (bps)'); grid on; 
subplot(2,1,2);  
plot(time3_1, thru3_1, '-*'); 
title('Throughput On Monitor Node'); xlabel('Time (sec)'); 
 
ylabel('Throuhput (bps)'); grid on; 



C. Application Definition 
 
<?xml version="1.0" encoding="UTF-8" ?>  
<orbit xmlns="schema.orbit-lab.org/062804"> 
 <application id="orbit:winlab:sensorNets:ap"> 
  <name>AccessPoint</name>  
  <version major="0" minor="1" revision="0" />  
  <organization> 
   <name>WINLAB, Rutgers University</name>  
   <url>http://www.winlab.rutgers.edu/</url>  
  </organization> 
  <shortDescription>Simulate an access point in a sensor network</shortDescription>  
  <description> 
An access point which periodically sends out a beacon advertising its capabilities and records topology 
and routing information. 
  </description>  
  <url>http://apps.orbit-lab.org/sensorNets/ap/</url>  
  <properties> 
   <property> 
    <name>sensornet_interface</name>  
    <mnemonic>s</mnemonic>  
    <type>xsd:string</type>  
    <dynamic>yes</dynamic>  
    <description>Device name for sending beacons</description>  
   </property> 
   … 
  </properties> 
  <measurements> 
   <measurement id="topology"> 
    <metric id="node_id" type="xsd:int"> 
     <description>ID of reporting access node as set in property "sensornet_node_id"</description>  
    </metric> 
     … 
   </measurement> 
   … 
   </measurements> 
   <!--  Admin & Developer -->  
  <issueTrackingUrl>http://apps.orbit-lab.org/issues/winlab/sensorNets</issueTrackingUrl>  
  <repository> 
   <development>scm:cvs:pserver:anoncvs@cvs.orbit-lab.org:/winlab/sensorNets/ap</development>  
   <binary>apt:repository.orbit-lab.org/orbit/binary:???</binary>  
  </repository> 
  <developers> 
   <developer> 
    …  
   </developer> 
  </developers> 
  <dependencies> 
   <dependency> 
    <id>libmac</id>  
    <version>>= 0.4</version>  
    <url>apt:repository.orbit-lab.org/debian/binary:libmac</url>  
   </dependency> 
  </dependencies> 
   </application> 
  </orbit> 

 


