SDR - Spectrum Sensing

Christina Baaklini, Michael Collins, Nick Cooper, and Nicole DiLeo
Overview

- Implementation of State Machines
- FFTW C Library
- Gnuplot
Implementation of State Machines

- State machines are often the backbone of FPGA development.
- They are divided into two basic output classes:
 - Mealy takes into account both internal state and inputs
 - Moore only utilizes internal state
- State machine described as ASM is easier to map to implementation in a hardware description language such as VHDL.
- In order to implement a state machine from the state diagram, VHDL is used. Typically a register (D FF) is used in conjunction with output logic (Me vs Mo), and next state arguments.
Case statements are the main implementation of FSMs

Example is of a 2-state FSM for a model elevator controller (Mealy output logic)
FFTW C Library

- Fastest free implementation of Fast Fourier Transform
- Resolved issues with memory allocation
- Used `fftw_malloc` to allocate memory appropriately
- Can now transform IQ time samples into frequency domain

```c

in_ = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*fft_size_);
out_ = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*fft_size_);
plan_ = fftw_plan_dft_1d(fft_size_,in_,out_,FFTW_FORWARD,FFTW_ESTIMATE);
fft_data_.clear();

while (stop(index, fft_size_, overlap_) < N) {
    for (unsigned int i = start(index, fft_size_, overlap_);
         i <= stop(index, fft_size_, overlap_); i++) {
        s.at(i-start(index, fft_size_, overlap_)) = iq_samples_.at(i);
    }

    for (unsigned int i = 0; i < fft_size_; i++){
        s2.at(i) = (window_.at(i))*(s.at(i));
    }

    for (unsigned int i = 0; i < fft_size_; i++){
        in_[i][0] = s2[i].real();
        in_[i][1] = s2[i].imag();
    }

    fftw_execute(plan_);
}
```

https://github.com/FFTW/fftw3
Gnuplot

- Open-source, cross-platform graphing utility
- Used in Octave for plotting
- Can be controlled in C++ through gnuplot-iostream interface
- We plan to use this interface to generate waterfall plots, power vs. frequency, etc. in C++ implementation

http://www.gnuplot.info/
https://github.com/dstahlke/gnuplot-iostream

```cpp
#include "gnuplot-iostream.h"

int main() {
    Gnuplot gp;
    gp << "set terminal x11\n";
    gp << "plot sin(x)\n";
    gp.flush();
    return 0;
}
```
Next Week

- Take a look at Spectrum Sensing framework and begin to incorporate our FSM designs
- Incorporate C++ script with Wiserd receiver module
- Implement real-time processing and plotting