Using FPGAs for Spectrum Sensing and Modulation Recognition Project

Group Members:
Ryan Davis
Zhuohuan Li
Sid Mandayam

Advisor: Richard Martin

Date: 07/16/2020
Ryan Davis
Class of 2021
Rutgers University
Computer Engineering and Computer Science

Zhuohuan Li
Class of 2020
Rutgers University
Computer Engineering

Sid Mandayam
Class of 2022
Rutgers University
Computer Science and Mathematics
Project Overview

- Project seeks to use machine learning to recognize different wireless devices
- Use software defined radios (SDRs) to record various devices as training data for neural nets
- Classify type of device based on RF signature
Last Week

- Began working on RRC matched filter using MATLAB
- Collected data on Grid
- Added materials to the website
Data Collection

- Data has been collected
- Dataset documentation
- Create a large metadata file for the entire dataset
Matched Filter

- **What it is:**
 - Detect if a “template” signal is present in a noisy, unknown signal
 - Used to determine if the unknown signal follows a particular modulation scheme
 - Popular choice for maximizing SNR in digital communications

- **What it is to us:**
 - NN Based Modulation Recognition
 - Requires very little a priori information
 - Used for signals we know very little about
 - Matched Filter
 - Requires a priori information (cannot work without it)
 - Used for signals we have decent knowledge of
 - Performance Comparison
Use Simple Matched Filter to Improve the SNR in Matlab

Goals:

- Help us detect the pulse better even with noise
- Minimize the effect of noise by increase SNR
- To maximize the SNR, the impulse response of matched filter should be a reversed and delayed version of the signal
Plans for next week

- Create a matched filter in Go instead of Matlab to be used in the argo2verilog compiler to generate Verilog code to used for FPGA implementation
- Document dataset
- Work more on the website
Questions?