Multi-Cam Fusion

Group Members:
Arnuv Batra, Yue Wang, Peter Wilmot, Varun Kota, Jesse Lerner
Motivation for Multi-Cam Fusion

The point of this project is to be able to combine multiple camera views in a smart intersection.

Why do we need multiple views?
To see things that may not be visible from one perspective and avoid blindspots.
Project Objectives

● 4 Intel RealSense 3D Camera
 ○ Uses Point Cloud Data type
● Stitch projections to one model

● Possible uses:
 ○ Intersection monitoring
 ○ Assisted driving
 ○ Traffic control
 ○ Crash prevention
High-Level Solution Design

Different point clouds with overlapping views

A point cloud of more complete view
High-Level Solution Design

Different point clouds with overlapping views

Transformations: unify point clouds into a world coordinate

A point cloud of more complete view
High-Level Solution Design

2D-3D correspondences

Transformations: camera → world

Transformations: unify point clouds into a world coordinate
High-Level Solution Design

Reference Markers

2D-3D correspondences

Transformations: camera → world

Transformations: unify point clouds into a world coordinate
What is ArUco?

- ArUco Markers are known objects that are easy to find with computer vision.
- The OpenCV library has a method to find ArUco markers and calculate relative camera position.
- We use this to calculate the cameras relative positions.
The Idea:

Camera 1 sees the ArUco tag and identifies its position relative to the ArUco tag’s four corners.

Camera 2 sees the same ArUco tag, finding its own position relative to the four corners of the same tag.

Camera 1 and Camera 2 both know their positions in relation to a set of common points, so we should be able to estimate the transform between them.
Camera 1

Shadows (limited visibility)

Camera 2

Blindspots in each camera

Manual Calibration

Automatic Calibration

Camera 1

No shadows
Future Work

- One big issue with using our work in a real-world setting is latency. Point Clouds are large and slow to process.
 - Figure out latency and whether it can be improved
 - Find faster ways to display or process information
- Fix automatic calibration
- Incorporate smart car camera and position
 - Challenges with moving camera and wireless connection
 - ArUco tags would not be able to help calibrate moving cameras, and wireless connections have much more latency

Example program latency: 0.5s
-> 0.5s x 27 m/s
Uncertainty: 13.5 meters
Any Questions?