Abstract
The project focuses on the Internet of Things (IoT) intertwined with Machine Learning (ML). The group continues the SenseScape Testbed, an IoT experimentation platform for indoor environments containing a variety of sensors, location-tracking nodes, and robots. The SenseScape Testbed provides an adaptable environment for labeling/testing advanced ML algorithms centered around IoT.

The Project’s Three Phases

Phase One:
- MAESTROS recognize predetermined set of activities in office
- Set in coordinate system
- Cameras capturing video data of human activity
- Automatic labeling

Phase Two:
- MAESTROS communicate with each other about what is happening in space using zero-shot or few-shot recognition.

Phase Three:
- MAESTROS communicate with each other to create a narrative of given space
- "memory" of the space
- Descriptions based on scope of time
- LLM is core of project

SERVER/DATABASE ARCHITECTURE

Here is the location of where the sensor data is being sent.

Synchronizes clocks in network
- Synchronizes Raspberry Pis with sensors or cameras attached
- Essential for connecting sensor data to the camera
- Input is same time
- Using ethernet to connect to boundary server - latency less than a wireless connection

Hardware

- **Raspberry Pi Model 3B+**: Microcomputer with Raspberry Pi OS Lite (Legacy)
- **MAESTRO**: a custom multi-modal sensor. Has **NINE** distinct sensors

Website

- **Reservation system** for robot
 - Client sends Python script for robot that will be carried out if accepted
 - **User-friendly**: easy for user to execute commands & restricts change

HARDWARE

- **Raspberry Pi Model 3B+**: Microcomputer with Raspberry Pi OS Lite (Legacy)
- **MAESTRO**: a custom multi-modal sensor. Has **NINE** distinct sensors

WEBSITE

- **Real-time information** on the sensors: Name of sensor, online status, & continuous data
- **Reservation system** for robot
 - Client sends Python script for robot that will be carried out if accepted
 - **User-friendly**: easy for user to execute commands & restricts change

UNITY/ROBOTICS

- **Explored Unity** for human centered design
 - Avatar mirrors webcam feed
 - VSeeFace: sends webcam data to IP address
 - Multiple users in testbed
- **Explored ROS Point Clouds**
 - LIDAR generated point clouds
 - Explore room using first person camera
 - Point cloud sent in real-time through ROS rviz (3D visualization tool)
- **VR through Meta Quest 2**
 - User can move & interact with digital twin room in headset
 - Demo: table and 3 blocks + grabbed using controllers

COORDINATE SYSTEM

Measurements taken of WINLAB. Focus on smaller control room. Map to be included on website.

FUTURE WORK

- **Hardware for PTP**: TimeCard mini Platinum Edition from OCP-TAP
- **Data Collection**: Set up MAESTROS & cameras in grid and collect data
 - **Data is uploaded on website**
 - **Cross-modal retrieval**
 - **Embedding-space arithmetic**
 - **Audio-to-image generation**

ACKNOWLEDGMENTS

We would like to thank Professor Jorge Ortiz for being our mentor, as well as Jenny Shane and Ivan Seskar for suggesting advice for a few of our challenges. We would also like to thank our graduate students, Hedaya Walter and Sonya Sun Yuan, for guiding us through the entire research project process. This work was supported in part by the NSF REU program and the donation from nVERSES CAPITAL.