PROBLEM
- Models are getting more complex
- Running models on less powerful devices while maintaining low latency is difficult
- MEC (Mobile-edge computing) is a viable solution

OBJECTIVE
Develop a framework to analyze tradeoffs between accuracy and latency of models when performing edge computing

WHAT IS MEC?
Mobile-Edge Computing is a network architecture that brings computation and storage capabilities closer to the end-users, reducing latency and improving real-time performance.

APPROACH
- Task: Image Classification
- Testing over entire test set: less variability
- Edge: Powerful device
 - Oracle; 100% task accuracy
- Mobile: Less powerful Device
 - 85% accuracy on task
- If mobile confidence < threshold, help is requested from Edge
- Measuring latencies at each step

BENEFITS
- Gaining a deeper understanding of tradeoffs required to optimize tasks for accuracy/latency
- Understand different scenarios for Real-Time MEC and how certain factors affect the decision to ask for help more than others

CONCLUSION
- Implementing a threshold for MEC systems allows for a faster prediction than simply using an Edge server, and a more accuracy inference than just using a Mobile device
- Attempting to assimilate real life by implementing CPU speed and network restrictions has a high impact on the overall latency of the system
- Introducing parallelization during inference (Multithreading with queue) allows for lower latency and quicker predictions

FUTURE WORK
- Software Engineering: Automating the pipeline in the experimental set up in a more streamlined manner and implementing frameworks for synchronization.
- Experiments:
 - Split Computing and Early Exiting
 - Multiple Clients and Servers
 - Different Queuing Policies

ACKNOWLEDGEMENTS
- Sponsor(s): nVerses Capital
- Project head: Prof. Anand Sarwate
- Special thanks: Prof. Waheed U. Bajwa, Ivan Seskar, Jenny Shane, Prof. Roy Yates, & all PhD students who helped!
This material is based upon work supported by the National Science Foundation under grant no. CNS-2148104 and is supported in part by funds from federal agency and industry partners as specified in the Resilient & Intelligent NextG Systems (RINGS) program.

As you vary the threshold for edge assistance, how does the average latency change (over the dataset)?

What is the impact of introducing CPU and network limitations?

Why does the latency increase as the accuracy increases?

Link to website for more info!